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Abstract—A parallel implementation of root finding on an SIMD 

application accelerator is reported. These are roots of stochastic 

differential equations in the computational finance domain which 

require a stochastic simulation to be performed for each 

evaluation of the pricing function. Experiments show that a 

speedup of 15X can be achieved over using a stand-alone CPU 

processor, depending on the required accuracy, and the 
numerical method employed. 
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I.  INTRODUCTION 

Traditionally, computational finance used multiple 
instruction multiple data stream (MIMD) such as Blade 
computers [1, 2], but that is changing with the availability of 
special application accelerators. Many problems in high 
performance computing for finance, such as derivative 
valuation and risk measurement, are intensively multi-
dimensional and floating point in nature to the point where 
parallel algorithms can be oriented toward single instruction 
multiple data stream (SIMD) coprocessors. An implementation 
with a single coprocessor is discussed. 

II. HARDWARE 

One or more SIMD coprocessors are added on the system 
bus. The CPUs and coprocessors communicate over the system 
bus. While several application accelerators can be added to the 
system bus, the results reported here are for 1 CPU core with 
and without 1 SIMD coprocessor.  
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Figure 1.  Hardware Architecture. 

III. ALGORITHM IMPLEMENTATION PHASES 

The computational finance application domain hierarchy is 

now described. An investor or firm has a portfolio, which is a 

set of positions held in one or more financial instruments. 

Each of those instruments usually has one or sometimes many 

underlying securities. Many thousands of potential market 

scenarios need to be simulated over future market time t  for 

each security. The overall cardinality of the simulation 

problem becomes larger when the investor or firm is larger. 

An illustration of these three phases for a given position 

valuation under just two market scenarios will be presented. 
Many times the underlying securities are stock prices which 

are modeled as continuous random variables which vary over 

time )(tS where 0t  and 0)( tS . 

 

 
 

Figure 2.  One Scenario of Stock Price Evolution. 

 

In quantitative financial applications, algorithms have 3 

distinct phases, scenario generation, valuation and root 

finding, which are explained below. The first two phases will 

be also known as pricing. 
 

A. Scenario Generation 

Scenario generation is a simulation of the market prices 

moving according to an agreed upon and customary 

probability density function. This is a solution to a set of 

stochastic differential equations (SDE) which has as many 
dimensions as the number of underlying securities in the entire 

portfolio. Thousands of scenarios need to be simulated in 

order to account for potential market situations. Geometric 

Brownian Motion (GBM) models the behavior of stocks price 

 



movements over simulation time, )(tS in terms of the drift and 

volatility, , with stochastic term )(tdW . 

With GBM it is assumed that stock prices moves randomly 
over time according to the lognormal distribution. With the 
lognormal distribution, the natural logarithm of the rate of 
return of the stock prices at a future time T as compared to 
now, t , )(/)( tSTS  is normally distributed. In this case, T  (in 

decimal years) is the maturity of the instrument. For example, 
three months is represented as 25.T . 
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where ],[ sm  is the normal distribution with mean m  and 

standard deviation s .  
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Figure 3.  Probability Distribution of Stock Prices over time for a Single 

Process of Equations (2). 

Geometric Brownian Motion is the assumption of the 
Black-Scholes formula, an industry standard. Each derivative 
position relies on one or more underlying securities; in this 
case stock price variation over time is denoted by )(tS .  

      )()()()( 111111 tdWtSdttStdS                                       (2) 

… 

)()()()( tdWtSdttStdS mmmmmm    

There is one of these equations for each underlying security in 
the portfolio [4][5][6][7]. 

B. Valuation 

A portfolio of derivative positions is valued and this 
requires millions of simulation steps over the time horizon, 
applying a known payout function which models the financial 
instrument applied of the market prices using a set of input 
parameters. An instrument which is priced on one underlying 
security has only one random process to consider, but some 
exotic instruments can take into account as many as 30 

underlying securities. In any case, the valuation forms a 
boundary value problem for the SDEs. 

 

Figure 4.  100 Scenarios of Stock Price Evolution  

Scenario generation and valuation involves evaluating v in  

                                                                                                  (4) 

where                          is a formula involving the expected 

 value of parameters in the vector         . 

 

Figure 5.  Example of 100 Scenarios for Pricing   

C. Root Finding 

Root finding involves applying a numerical procedure to 

finding an unknown input parameter to the valuation process. 

While pricing algorithms have a fixed number of iterations 
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until completion, root finding algorithms have a variable 

number of iterations until convergence.  

 

IV. ROOT FINDING METHODOLOGY 

Root finding is equivalent to the process of finding the 
inverse of the pricing function at a specific point. Root finding 
gets its name from finding the values     of polynomial 
functions         where                    , however, in this case, the 
functions are not polynomials, but are instead the x-values or 
the inverse of pricing function        known as          . They are 
the roots of the stochastic differential equations.                 
More specifically, if    Equation (4)   holds then 

and the inverse function       can be expressed as a root finding 
problem in Equation (5). Given y-values, successively more 
accurate x-values are refined until Equation (5) is 
approximately satisfied. Newton-Raphson and Bisection [8] are 
common techniques to generate successive   x-values for 
convergence. 

(5) 

A. Vectorized Root Finding Algorithm 

The vector pricing function and its inverse function which 
the root finder is intending to find is listed below. 

(6) 

Pricing, the evaluation of    , occurs in a massively parallel 
way on the coprocessor. This is where the bulk of parallelism is 
achieved both within computing the pricing function    and the 
parallelism between different positions each invoking           . 

Typically, root finding convergence speed determines the 
amount of iteration performed. When vectorizing the root 
finder, a static rather than dynamic iteration limit is used. This 
is done in order to feed to the coprocessor the maximum 
number of calculations at each iteration step. All conditional 
logic is performed in parallel on each of the desired 
solutions.The vectorized root finding primitives are invoked on 
the SIMD coprocessor as depicted in Figure 6. On a CPU the 
variation in iterations is of small consequence in a large 
portfolio. Iteration ceases upon convergence for each position 
and the CPU moves on the next position without wasting 
cycles. With the coprocessor, iteration involves a series of 
kernel invocations. While some elements of the vector have 
achieved convergence, there are other elements that have not. 
As iteration continues, thread cycles are wasted on those vector 
elements which have already converged. After implementing 
several root finding algorithms, the conclusion is that vectoring 
root finding achieves the best speedup when the deviation of 
convergence iterations is smallest.  

B. Accuacy Check  

The parallel root solution for       is called      .  It and the 
serial root solution       are compared for the M positions of the 
portfolio and compared to the aggregate tolerance as in 
Equation (7). 

void derivBisectCoproc(double *y, ...) {

//execution sequence:

priceDerivCoproc( fresult, x, ... );

priceDerivCoproc( fmidresult, x, ... );

initCondCoproc( f, fmid, fresult, ...);

selectMid( xmid, rtb, dx);

priceDerivCoproc(fmidresult, xmid, ...);

mainIter( fmid, fmidresult,

y, rtb, xmid, dx );

…
selectMid( xmid, rtb, dx);

priceDerivCoproc(fmidresult, xmid, ...);

mainIter( fmid, fmidresult, y, rtb, xmid, dx );

setConvergence( count );

}

//coprocessor functions:

void priceDerivCoproc( fresult, x, ... )

{ … }

void initCondCoproc( f, fmid, fresult, ...)

{ … }

void selectMid( xmid, rtb, dx)

{ … }

void mainIter(fmid,fmidresult,y,rtb,xmid,dx )

{ … }

void setConvergence( count )

{ … }
 

Figure 6.  Invocation of Vectorized Coprocessor Functions 

C. Speedup 

Speedup of 15X or greater between an unaccelerated CPU 
and a CPU accelerated with a single SIMD coprocessor can be 
achieved as shown in the experiment results of Figure 7 for 
portfolio size M.  

 

Figure 7.  Speedup from Experiment with Single Coprocessor 
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