
Accelerated Root Finding for Computational Finance

Mark J. Bennett

Rho Trading Securities, LLC

Chicago, IL, USA

markb@rhotrading.com

Abstract—A parallel implementation of root finding on an SIMD

application accelerator is reported. These are roots of stochastic

differential equations in the computational finance domain which

require a stochastic simulation to be performed for each

evaluation of the pricing function. Experiments show that a

speedup of 15X can be achieved over using a stand-alone CPU

processor, depending on the required accuracy, and the
numerical method employed.

Keywords-high performance computing; SIMD computer
architecture; numerical methods; valuation; financial derivatives

I. INTRODUCTION

Traditionally, computational finance used multiple
instruction multiple data stream (MIMD) such as Blade
computers [1, 2], but that is changing with the availability of
special application accelerators. Many problems in high
performance computing for finance, such as derivative
valuation and risk measurement, are intensively multi-
dimensional and floating point in nature to the point where
parallel algorithms can be oriented toward single instruction
multiple data stream (SIMD) coprocessors. An implementation
with a single coprocessor is discussed.

II. HARDWARE

One or more SIMD coprocessors are added on the system
bus. The CPUs and coprocessors communicate over the system
bus. While several application accelerators can be added to the
system bus, the results reported here are for 1 CPU core with
and without 1 SIMD coprocessor.

Dual Core
CPU

SIMD
Coprocessor

SIMD
Coprocessor

Figure 1. Hardware Architecture.

III. ALGORITHM IMPLEMENTATION PHASES

The computational finance application domain hierarchy is

now described. An investor or firm has a portfolio, which is a

set of positions held in one or more financial instruments.

Each of those instruments usually has one or sometimes many

underlying securities. Many thousands of potential market

scenarios need to be simulated over future market time t for

each security. The overall cardinality of the simulation

problem becomes larger when the investor or firm is larger.

An illustration of these three phases for a given position

valuation under just two market scenarios will be presented.
Many times the underlying securities are stock prices which

are modeled as continuous random variables which vary over

time)(tS where 0t and 0)(tS .

Figure 2. One Scenario of Stock Price Evolution.

In quantitative financial applications, algorithms have 3

distinct phases, scenario generation, valuation and root

finding, which are explained below. The first two phases will

be also known as pricing.

A. Scenario Generation

Scenario generation is a simulation of the market prices

moving according to an agreed upon and customary

probability density function. This is a solution to a set of

stochastic differential equations (SDE) which has as many
dimensions as the number of underlying securities in the entire

portfolio. Thousands of scenarios need to be simulated in

order to account for potential market situations. Geometric

Brownian Motion (GBM) models the behavior of stocks price

movements over simulation time,)(tS in terms of the drift and

volatility, , with stochastic term)(tdW .

With GBM it is assumed that stock prices moves randomly
over time according to the lognormal distribution. With the
lognormal distribution, the natural logarithm of the rate of
return of the stock prices at a future time T as compared to
now, t ,)(/)(tSTS is normally distributed. In this case, T (in

decimal years) is the maturity of the instrument. For example,
three months is represented as 25.T .

]),)(
2

[(~))(ln())(ln(
2

tTtTtSTS        

where],[sm is the normal distribution with mean m and

standard deviation s .

P[S(t)=price]

Figure 3. Probability Distribution of Stock Prices over time for a Single

Process of Equations (2).

Geometric Brownian Motion is the assumption of the
Black-Scholes formula, an industry standard. Each derivative
position relies on one or more underlying securities; in this
case stock price variation over time is denoted by)(tS .

)()()()(111111 tdWtSdttStdS   (2)

…

)()()()(tdWtSdttStdS mmmmmm  

There is one of these equations for each underlying security in
the portfolio [4][5][6][7].

B. Valuation

A portfolio of derivative positions is valued and this
requires millions of simulation steps over the time horizon,
applying a known payout function which models the financial
instrument applied of the market prices using a set of input
parameters. An instrument which is priced on one underlying
security has only one random process to consider, but some
exotic instruments can take into account as many as 30

underlying securities. In any case, the valuation forms a
boundary value problem for the SDEs.

Figure 4. 100 Scenarios of Stock Price Evolution

Scenario generation and valuation involves evaluating v in

 (4)

where is a formula involving the expected

 value of parameters in the vector .

Figure 5. Example of 100 Scenarios for Pricing

C. Root Finding

Root finding involves applying a numerical procedure to

finding an unknown input parameter to the valuation process.

While pricing algorithms have a fixed number of iterations

iii ytxv ),,(a

),,(txv ii a

ia

20.,05.  

20.,05.  

until completion, root finding algorithms have a variable

number of iterations until convergence.

IV. ROOT FINDING METHODOLOGY

Root finding is equivalent to the process of finding the
inverse of the pricing function at a specific point. Root finding
gets its name from finding the values of polynomial
functions where , however, in this case, the
functions are not polynomials, but are instead the x-values or
the inverse of pricing function known as . They are
the roots of the stochastic differential equations.
More specifically, if Equation (4) holds then

and the inverse function can be expressed as a root finding
problem in Equation (5). Given y-values, successively more
accurate x-values are refined until Equation (5) is
approximately satisfied. Newton-Raphson and Bisection [8] are
common techniques to generate successive x-values for
convergence.

(5)

A. Vectorized Root Finding Algorithm

The vector pricing function and its inverse function which
the root finder is intending to find is listed below.

(6)

Pricing, the evaluation of , occurs in a massively parallel
way on the coprocessor. This is where the bulk of parallelism is
achieved both within computing the pricing function and the
parallelism between different positions each invoking .

Typically, root finding convergence speed determines the
amount of iteration performed. When vectorizing the root
finder, a static rather than dynamic iteration limit is used. This
is done in order to feed to the coprocessor the maximum
number of calculations at each iteration step. All conditional
logic is performed in parallel on each of the desired
solutions.The vectorized root finding primitives are invoked on
the SIMD coprocessor as depicted in Figure 6. On a CPU the
variation in iterations is of small consequence in a large
portfolio. Iteration ceases upon convergence for each position
and the CPU moves on the next position without wasting
cycles. With the coprocessor, iteration involves a series of
kernel invocations. While some elements of the vector have
achieved convergence, there are other elements that have not.
As iteration continues, thread cycles are wasted on those vector
elements which have already converged. After implementing
several root finding algorithms, the conclusion is that vectoring
root finding achieves the best speedup when the deviation of
convergence iterations is smallest.

B. Accuacy Check

The parallel root solution for is called . It and the
serial root solution are compared for the M positions of the
portfolio and compared to the aggregate tolerance as in
Equation (7).

void derivBisectCoproc(double *y, ...) {

//execution sequence:

priceDerivCoproc(fresult, x, ...);

priceDerivCoproc(fmidresult, x, ...);

initCondCoproc(f, fmid, fresult, ...);

selectMid(xmid, rtb, dx);

priceDerivCoproc(fmidresult, xmid, ...);

mainIter(fmid, fmidresult,

y, rtb, xmid, dx);

…
selectMid(xmid, rtb, dx);

priceDerivCoproc(fmidresult, xmid, ...);

mainIter(fmid, fmidresult, y, rtb, xmid, dx);

setConvergence(count);

}

//coprocessor functions:

void priceDerivCoproc(fresult, x, ...)

{ … }

void initCondCoproc(f, fmid, fresult, ...)

{ … }

void selectMid(xmid, rtb, dx)

{ … }

void mainIter(fmid,fmidresult,y,rtb,xmid,dx)

{ … }

void setConvergence(count)

{ … }

Figure 6. Invocation of Vectorized Coprocessor Functions

C. Speedup

Speedup of 15X or greater between an unaccelerated CPU
and a CPU accelerated with a single SIMD coprocessor can be
achieved as shown in the experiment results of Figure 7 for
portfolio size M.

Figure 7. Speedup from Experiment with Single Coprocessor

REFERENCES

[1] Wright, J., “Blades Have the Edge,” Spectrum, IEEE, Volume 42, Issue
4, April 2005 pp. 24 – 29

[2] “Algo Suite Technical White Paper,” Algorithmics, Inc., Hewlett-

Packard, April 2005.

[3] F. Black, M. Scholes, “The Pricing of Options and Corporate
Liabilities,” Journal of Political Economy, 81 (May-June 1973), pp. 637-

659.

[4] J. C. Hull, Options, Futures and Other Derivatives, Prentice Hall, 2006.

[5] G. Levy, Computational Finance using C and C#, Academic Press,

2008. G. Levy, Computational Finance using C and C#, Academic
Press, 2008.

[6] S.E. Shreve, Stochastic Calculus for Finance: Volumes I and II,

Springer Finance, 2004.

[7] M. J. Bennett, “Computational Finance,” Presentation to Chicago
Chapter of the Association for Computing Machinery, December, 2008.

[8] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery,

Numerical Recipes in C: The Art of Scientific Computing, Cambridge
University Press, 2007.

 (7)

)(xf 0)( yxf

1v

0),,(1 

iii xtyv a





M

i

iiii txvtxv
1

11),,(),,(aa

1v
1v

x

xyv )(1

1v

1v

v

,),,),,(xA(y,vyAxv 1   tt

v

v
1

v

