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Abstract— Graphics Processing Units (GPUs) are highly parallel Single In-
struction Multiple Data (SIMD) engines, with extremely high degrees of available
hardware parallelism. The task of implementing a software routine on a GPU
currently requires significant manual design, iteration and experimentation.
This paper presents an automated approach to partition a software application
into kernels (which are executed in parallel) that can be run on the GPU.
Experimental results demonstrate that our approach correctly and efficiently
produces fast GPU code, with high quality. We show that with our partitioning
approach, we can speedup certain routines by as high as 71% (on avg. 25%)
when compared to a monolithic (unpartitioned) implementation. Our entire
technique (from reading a C subroutine to generating the partitioned GPU
code) is completely automated, and has been verified for correctness.

I. Introduction
GPUs were natively designed as graphics accelerators for image manip-

ulations, 3D rendering operations, etc. These graphics acceleration tasks
require that the same operations are performed independently on different
regions of the display. As a result, GPUs were designed to operate in a
SIMD fashion, which is a natural computational paradigm for graphical
display manipulation tasks.

In recent times, the power of the GPU has been actively exploited for
general purpose scientific computations as well [1], [2], [3], [4]. The growth
of the general purpose GPU (GPGPU) applications stems from the fact
that GPUs, with their large memories, large memory bandwidths, and high
degrees of parallelism are readily available as off-the-shelf devices, at very
inexpensive prices. The theoretical performance of the GPU [5] has grown
from 50 Gflops for the NV40 GPU in 2004 to more than 900 Gflops for GTX
280 GPU in 2008. This high computing power mainly arises due to a heavily
pipelined and highly parallel architecture. GPU memory bandwidths have
grown from 42 GB/s for the ATI Radeon X1800XT to 141.7 GB/s for the
NVIDIA GeForce GTX 280 GPU. Further, the development of open-source
programming tools and languages for interfacing with the GPU platforms
has further fueled the growth of GPGPU applications.

There are typically two broad approaches that have been employed to
accelerate scientific computations on the GPU platform. The first approach
is the most common, and involves taking a scientific application, and re-
architecting it’s code to exploit the GPU’s capabilities. This redesigned
code is now run on the GPU. Significant speedup has been demonstrated in
this manner, for several algorithms. Examples of this approach include the
GPU implementations of sorting [6], the map-reduce algorithm [7], database
operations [8] etc. A good reference in this area is [4].

The second approach involves identifying a particular subroutine S in a
CPU based algorithm (which is repeated multiple times in each iteration
of the computation, and is found to take up a majority of the runtime of
the algorithm), and accelerating it on the GPU. We refer to this approach
as the porting approach, since only a portion of the original CPU based
code is ported on the GPU (without any re-architecting of the code).
This approach requires less coding effort than the re-architecting approach.
The overall speedup obtained through this approach is, however, subject
to Amdahl’s law [9]. The re-architecting approach typically requires a
significant investment of time and effort. The porting approach is applicable
for many problems in which a small number of subroutines are run
repeatedly on independent data values, and take up a large fraction of the
total runtime. Therefore, an approach to automatically generate GPU code
for such problems would be very useful in practice.

In this paper, we focus on automatically generating GPU code for
the porting class of problems. Porting implementations require careful
partitioning of the subroutine into kernels which are run in parallel on
the GPU. Several factors must be considered in order to come up with
an optimal solution:
• To maximize the speedup obtained by executing the subroutine on the

GPU, numerous and sometimes conflicting constraints imposed by the
GPU platform must be accounted for. In fact, if a given subroutine
is run without considering certain key constraints, the subroutine may
fail to execute on the GPU altogether.

• The number of kernels, and the total communication and computation
costs for these kernels must be accounted for as well.

Our kernels are generated to be compiled in the Compute Unified
Device Architecture (CUDA), which is an open-source programming and

interfacing tool provided by NVIDIA for programming their GPU devices.
The GPU device used for our implementation and benchmarking is the
NVIDIA GeForce GTX 280. We next briefly discuss the hardware and
programming model for the GTX 280 GPU.

A. Hardware Model
The GeForce 280 GTX architecture has 30 multiprocessors (MPs) per

chip and 8 processors (ALUs) per multiprocessor. There is no mechanism to
communicate between the different multiprocessors without the intervention
of the host. Each multiprocessor has a set of 16384 32-bit registers and
16KB of shared memory. The total on-board memory in GeForce 280 GTX
is 1 GB. The device has about 480 KB of read-only cached memory. The
main memory (i.e. the global memory) is readable and writable, and all
threads and the host can access it. However, global memory is not cached
and has high latency.

B. CUDA Programming Model
CUDA [10] was released by NVIDIA corporation in early 2007. When

programmed through CUDA, the GPU is viewed as a compute device
capable of executing a large number of threads in parallel. Threads are the
atomic units of parallel computation, and the code they execute is called a
GPU kernel. The GPU device operates as a coprocessor to the main CPU,
or host. Data-parallel, compute-intensive portions of applications running
on the host can be off-loaded onto the GPU device. Such a portion of code
is compiled into the instruction set of the GPU device and the resulting
program, called a GPU kernel, is downloaded to the device.

A block (or a thread block) is a batch of threads that can cooperate
with each other by efficiently sharing data through fast shared memory, and
can synchronize their execution to coordinate memory accesses. Threads
are grouped in warps, which are further grouped in blocks. All the threads
composing a block are guaranteed to run on the same multiprocessor, and
can thus take advantage of shared memory and local synchronization. Blocks
have restrictions on the maximum number of threads in them. In a GeForce
280 GTX, the maximum number of threads grouped in a block is 512. A
set of identical thread blocks is executed on the device by executing one or
more blocks on each multiprocessor, using time slicing. However, at a given
time, at the most 1024 threads can be active in a single multiprocessor in
the 280 GTX device.

II. Our Approach
Our kernel generation engine automatically partitions a given subroutine S

into K kernels in a manner that maximizes the speedup obtained by multiple
invocations of these kernels on the GPU. Before our algorithm is invoked,
the key decision to be made is the determination of which subroutine(s)
to parallelize. This is determined by profiling the program and finding the
set of subroutines Σ that are invoked repeatedly and independently (with
different input data values) and collectively take up a large fraction of the
runtime of the entire program. Now each subroutine S ∈ Σ are passed to our
kernel generation engine, which automatically generates the GPU kernels
for S.

In particular, in our implementation, we assume that S is implemented in
the C programming language, and the particular SIMD machine for which
the kernels are generated is an NVIDIA GTX 280 GPU. Note that our
kernel generation engine is general, and can generate kernels for other
GPUs as well. If an alternate GPU is used, this simply means that the cost
parameters to our engine need to be modified. Also, our kernel generation
engine handles in-line code, nested if-then-else constructs of arbitrary depth,
pointers, structures, and non-recursive function calls (by value).

A. GPU Constraints on the Kernel Generation Engine
The use of a GPU based SIMD platform induces some constraints on the

kernel generation engine. In this section, we summarize these constraints.
In the following section, we describe how these constraints are incorporated
in our automatic kernel generation engine.
• As mentioned earlier, the NVIDIA GTX 280 GPU consists of 30

multiprocessors, each of which has 8 processors on it. As a result, there
are 240 hardware processors in all, on the GPU IC. For maximum
hardware utilization, it is important that we issue significantly more
than 240 threads at once. By issuing a large number of threads in



parallel, the data read/write latencies of any thread are hidden, resulting
in a maximal utilization of the processors of the GPU, and hence
ensuring maximal speedup.

• There are 16384 32-bit registers per multiprocessor. Therefore if a
subroutine S is partitioned into K kernels, with the ith kernel utilizing ri
registers, then we should have maxi(ri)· (# of threads per MP) ≤ 16384.
This argues that across all our kernels, if maxi(ri) is too small, then
registers will not be completely utilized (since the number of threads
per multiprocessor is limited to 1024), and kernels will be smaller
than they need to be (thereby making K larger). This will increase the
communication cost between kernels.
On the other hand, if maxi(ri) is very high (say 4000 registers for
example), then no more than 4 threads can be issued in parallel. As
a result, the latency of accessing off-chip memory will not be hidden
in such a scenario. In the CUDA programming model, if ri for the ith
kernel is too large, then the kernel fails to launch. Therefore, satisfying
this constraint is important to ensure the execution of any kernel. We
try to ensure that ri is roughly constant across all kernels,

• The number of threads per multiprocessor must be
– A multiple of 32 (since 32 threads are issued per warp, the

minimum unit of issue),
– Less than or equal to 1024, since there can be at most 1024 threads

issued at a time, per multiprocessor.
If the above conditions are not satisfied, then there will be less than
complete utilization of the hardware. Further, we need to ensure that the
number of threads per block is at least 128, to allow enough instructions
such that the scheduler can effectively overlap transfer and compute
instructions. Finally, at the most 8 blocks per multiprocessor can be
active at a time.

• When the subroutine S is partitioned into smaller kernels, the data that
is written by kernel k1 and needs to be read by kernel k2 will be stored
in global memory. So we need to minimize the total amount of data
transferred between kernels in this manner. Due to high global memory
access latencies, this memory is accessed in a coalesced manner.

• To obtain maximal speedup, we need to ensure that the cumulative
computation time over all kernels is as low as possible.

• We need to ensure that the number of registers per thread is minimized
such that the multiprocessors are not allotted less than 100% of the
threads that they are configured to run with.

• Finally, we need to minimize the number of kernels K, since each
kernel has an invocation cost associated with it. Minimizing K ensures
that the aggregate invocation cost is low.

Note that the above guidelines often place conflicting constraints on the
same variable. Our kernel generation algorithm is guided by a cost function
which quantifies these constraints, and hence is able to obtain the optimal
solution for the problem.

B. Automatic Kernel Generation Engine
The pseudocode for our automatic kernel generation engine is shown in

Algorithm 1. The input to the algorithm is the subroutine S which needs to
be partitioned into GPU kernels, and the number N of independent calls of
S that are made in parallel.

Algorithm 1 Automatic Kernel Generation(N, S)
BESTCOST ← ∞
G(V,E)← extract graph(S)
for K = Kmin to Kmax do

P ← partition(G,K)
for P ∈ P do

Q ← make acyclic(P)
for Q ∈ Q do

if cost(Q) < BESTCOST then
golden con f ig← Q
BESTCOST ← cost(Q)

end if
end for

end for
end for
generate kernels(golden con f ig)

The first step of our algorithm constructs the companion control and
dataflow graph G(V,E) of the C program. This is done using the Oink [11]
tool. Oink is a set of C++ static analysis tools. Each unique line l of the
subroutine S corresponds to a unique vertex v of G. If there is a variable
written in line l1 of S which is read by line l2 of S, then the directed edge
(v1,v2)∈E. Each edge has a weight associated with it, which is proportional
to the number of bytes that are transferred between the source node and the
sink node. An example code fragment and its graph G (with edge weights
suppressed) are shown in Figure 1.

Note that if there are if-then-else statements in the code, then the resulting
graph has edges between the node corresponding to the condition being
checked and each of the statements in the then and else blocks, as shown
in Figure 1.
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Fig. 1. CDFG Example
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Fig. 2. KDG example
Now our algorithm computes a set P of K-way partitions of the graph

G, which is inherently directed. We use hMetis [12] for this purpose. Since
hMetis (and other graph partitioning tools) operate on undirected graphs,
there is a possibility of hMetis’ solution being infeasible for our purpose.
This is illustrated in Figure 2. Consider a companion CDFG G which is
partitioned into 2 partitions k1 and k2 as shown in Figure 2 a). Partition
k1 consists of nodes a, b and c, while partition k2 consists of nodes d,
e and f . From this partitioning solution, we induce a kernel dependency
graph (KDG) GK(VK ,EK) as shown in Figure 2 b). In this graph, vi ∈VK
iff ki is a partition of G. Also, there is a directed edge ek(vi,v j) ∈ EK iff
∃np,nq ∈V s.t. e(np,nq) ∈ E and np ∈ ki, nq ∈ k j . Note that a cyclic kernel
dependency graph is an infeasible solution for our purpose, since kernels
need to be issued sequentially. To fix this situation, we selectively duplicate
nodes in the CDFG, such that the modified KDG is acyclic. Figure 2 c)
illustrates how duplicating node a ensures that the modified KDG that is
induced (Figure 2 d)) is acyclic.

In our kernel generation engine, we explore several K-way partitions. K
is varied from Kmin to a maximum value Kmax. For each of the explored
partitions of the graph G, a cost is computed. This estimates the cost of
implementing the partition on the GPU. The details of the cost function
are described in the next section. The lowest cost result golden config is
stored. Based on golden config, we generate GPU kernels (using a PERL
script). Suppose that golden config was obtained by a k-way partitioning
of S. Then each of the k partitions of golden config yields a GPU kernel,
which is automatically generated by our PERL script.

Data that is written by a kernel ki and read by another kernel k j (ki, k j< k)
is stored in the global memory in an array of length equal the number of
threads issued, and indexed at a location which is always aligned to a 32
byte boundary. This enables coalesced write and read accesses by threads
executing kernel ki and k j , respectively. Since the cached memories are read-
only memories, we cannot use them for communication between kernels.
Also, since the given subroutine S has N independent calls, our generated
kernels do not create any memory access conflicts when accessing global
memory.

1) Cost of a Partitioning Solution
The cost of each partitioning solution is computed using several cost

parameters, which are described next. In particular, our cost function C
considers 4 parameters x = {x1,x2, · · · ,x4}. We consider a linear cost
function, C = α1x1 +α2x2 +α3x3 +α4x4.

1) (Parameter x1): The first parameter to our cost function is the number
of partitions being used. The GPU runtime is significantly modulated
by this term, and hence it is included in our cost model.

2) (Parameter x2): This parameter measures the total time spent in com-
munication to and from the device’s global memory x2 = [ ∑K

i=1(Bi)
BW ].

Here Bi is the number of read or write transfers that are required



for the kernel i, and BW is the peak bandwidth for coalesced global
memory transfers. Therefore the term x2 represents the total amount
of time that is spent in communicating data, when any one of the N
calls of the subroutine S is executed.

3) (Parameter x3): The total computation time is estimated in this
parameter. Note that due to node duplication, the total computation
time is not a constant across different partitioning solutions. Let Ci
be the number of GPU clock cycles taken by kernel i. We estimate
Ci based on the number of clock cycles for various instructions
like integer and floating point addition, multiplication and division,
library functions for exponential, square root, etc. This information
is available from NVIDIA. Also let F be the frequency of operation
of the GPU. Therefore, the time taken to execute the ith kernel is Ci

F .
Based on this, x3 = ∑K

i=1(Ci)
F .

4) (Parameter x4): We also require that the average number of registers
over all kernels is a small number. As discussed earlier, this is
important to maximize speedup. This parameter (for each kernel) is
provided by the nvcc compiler that is provided along with the CUDA
distribution.

III. Experiments
Our kernel generation engine handles C programs. It handles non-

recursive function calls (by value), pointers, structures, and if-else con-
structs. The kernel generation tool is implemented in perl, and it uses
hMetis [12] for partitioning, and Oink [11] for generating the CDFG.

A. Evaluation Methodology
Our approach consists of two steps. In the first step, we compute the

weights α1,α2, · · · ,α4. This is done by taking a set of code benchmarks.
For all these C-code examples, we generate the GPU code for the examples
with 1, 2, 3, 4, · · · 20 partitions (kernels). The code is then run on the GPU,
and the values of runtime as well as all the x variables are recorded in each
instance. From this data, we fit the cost function C = α1x1 +α2x2 +α3x3 +
α4x4 in MATLAB. We take the actual runtime of any partitioning solution
on the GPU as its cost.

In the second step, we would use the values of the αi weights computed
in the first step, and run our kernel generation engine on the code which is
to be parallelized on the GPU. In particular, we select the best 5 partitions
(those which produce the 5 smallest values of the cost function). The kernel
generation engine would also generate the GPU kernels for these partitions,
and determine the best solution among the 5 (i.e. the solution which has
the fastest GPU runtime) after executing them on the GPU.

Our experiments were conducted over a set of 3 benchmarks. These were:
• MM. This code performs matrix multiplication. We experiment with

MM for matrices of various sizes (4x4 and 8x8). We experiment with
fixed point (MMI) as well as floating point (MMF) versions of MM.

• LU. This code performs LU-decomposition, required during the solu-
tion of a linear system. We experiments with systems of varying sizes
(matrices of size 4x4 and 8x8).

For our experiments, in the first step of the approach, we use the LU
benchmarks (for both 4x4 and 8x8 matrices) and determined the values of
αi. The values of these parameters were determined to be α1 = 5.1868,
α2 = 0.3485, α3 =−0.0368 and α4 = 1.2991.

Now in the second step, we tested the usefulness of our approach on the
remaining benchmarks (MMI and MMF, for matrices of size 4x4 and 8x8).

The results which demonstrate the fidelity of our kernel generation engine
are shown in Table I. In this table, the first column reports the number of
partitions being considered. Columns 2, 4, 6 and 8 indicate the 5 best
partitioning solutions based on our cost model, for the MMI4, MMI8,
MMF4 and MMF8 benchmarks respectively. If our approach had perfect
prediction fidelity, then these 5 partitioning solutions would have the lowest
runtimes on the GPU.

Columns 3, 5, 7 and 9 report the GPU runtimes (in milliseconds) for the
MMI4, MMI8, MMF4 and MMF8 benchmarks respectively. The 5 solutions
that actually had the lowest GPU runtimes are highlighted in bold font, with
the fastest solution marked with a ”?”.

From these results, we can see the need for partitioning these subroutines.
For instance in MMI8 benchmark, the fastest result obtained is with
partitioning the code into 10 kernels, which makes it 71% faster compared
to the runtime obtained using one monolithic kernel. Similarly for MMI4,
MMF4 and MMF8 the speedup obtained by our partitioing approach is
18%, 3% and 8%, respectively.

We can further observe that our kernel generation approach correctly
predicts 4, 3, 3 and 3 of the 5 best solutions (for the MMI4, MMI8, MMF4
and MMF8 benchmarks respectively). In 3 of the 4 benchmarks, our 5 best
partitioning solutions included the solution that was actually the best when

run on the GPU. In the fourth benchmark (MMF8), the GPU runtime of the
best solution among the 5 predicted best solutions was only 4.17% slower
than the solution that was actually the fastest when run on the GPU.

Prts. MMI4 MMI8 MMF4 MMF8
Best pred. GPU time Best pred. GPU time Best pred. GPU time Best pred. GPU time

1
√ 92.82 289.16

√ 65.63 √ 110.82
2

√ 83.97 353.53
√

324.47 114.36
3

√ 91.31 √
298.50

√ 63.70? 1988.37
4 177.40

√
476.86 66.96 √

957.00
5

√
89.40 1118.72

√
81.01 1027.36

6
√ 75.81? 784.21 163.27 2249.39

7 78.98 √ 143.45 √ 79.86 1654.47
8 182.73 784.22 77.64 √ 105.85
9 105.78 1121.62 202.61 798.85
10 133.14

√ 82.12? 80.70
√

156.84
11 447.58 521.53 235.98 401.71
12 90.65 433.84 91.79 101.65?

13 102.39
√ 132.70 94.15 104.92

14 101.65 163.29 100.13 233.51
15 122.09 266.63 96.16 148.29
16 101.84 543.54 102.93

√ 108.01
17 99.40 508.95 91.14 1020.10
18 94.92 559.10 105.15 357.71
19 102.40 133.97 176.45 596.27
20 98.18 664.43 99.08 614.99

TABLE I
VALIDATION OF THE AUTOMATIC KERNEL GENERATION APPROACH

In general the GPU runtimes tend to be noisy, and hence it is hard to
obtain 100% prediction fidelity. We are currently conducting further studies
to explain the variations in the GPU runtimes. We also plan to test our
approach on a larger and more general set of benchmarks.

IV. Conclusions
GPUs are highly parallel SIMD engines, with extremely high degrees of

available hardware parallelism. These platforms have received significant
interest for accelerating scientific software applications in recent times. The
task of implementing a software application on a GPU currently requires
significant manual intervention, iteration and experimentation. This paper
presents an automated approach to partition a software application into
kernels (which are executed in parallel) that can be run on the GPU. The
input to our algorithm is a subroutine which needs to be accelerated on the
GPU. Our approach automatically partitions this routine into GPU kernels.
Various partitions are explored, and each is given a cost which accounts for
GPU hardware and software constraints. Based on the least cost partition,
our approach automatically generates the resulting GPU code. Experimental
results demonstrate that our approach correctly and efficiently produces fast
GPU code, with high quality. Our results show that with our partitioning
approach, we can speedup certain routines by as high as 71% (on avg. 25%)
when compared to a monolithic (unpartitioned) implementation. Our entire
flow (from reading a C subroutine to generating the partitioned GPU code)
is completely automated, and has been verified for correctness.
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