
Decoupled Access/Execute Metaprogramming

for GPU-Accelerated Systems

Lee Howes, Anton Lokhmotov, Paul H.J. Kelly

Department of Computing, Imperial College London

Alastair F. Donaldson

Computing Laboratory, University of Oxford

I. INTRODUCTION

We describe the evaluation of several implementations of

a simple image processing filter on an NVIDIA GTX 280

card. Our experimental results show that performance depends

significantly on low-level details such as data layout and

iteration space mapping which complicate code development

and maintenance.

We propose extending a CUDA1 or OpenCL2 like model

with decoupled Access/Execute (“Æcute” [1]) metadata, de-

scribing its iteration space ordering and partitioning (execute

metadata) and its memory access patterns (access metadata).

We believe that using Æcute metadata will make software

engineering for accelerated systems more disciplined and

productive, by separating algorithm representation from low-

level mapping and tuning.

II. MOTIVATING EXAMPLE

We consider a vertical mean image filter, for which the

output pixel at position (x, y) is given by the formula

Ox,y =
1

D

D−1
∑

k=0

Ix,y+k, where (1)

• I is a W × H grey-scale input image;

• O is a W × (H − D) grey-scale output image;

• D is the diameter of the filter, i.e. the number of input

pixels over which the mean is computed (typically, D ≪
H);

• 0 ≤ x < W , 0 ≤ y < H − D.

Let N be the number of output pixels: N = W × (H −D). A
naı̈ve parallel algorithm can run N threads, each producing

a single output pixel, which requires Θ(ND) reads and

arithmetic operations. A good parallel algorithm, however,

must be efficient and scalable [2].

A. Scalable algorithm

The algorithm in Listing 1 strips the computation in the

vertical dimension, where up to T outputs in the same strip

are computed serially in two phases. The first phase in lines

6–10 computes Ox,y0 according to (1). The second phase in

lines 12–19 computes Ox,y for y ≥ y0 + 1 as Ox,y−1 +
(

Ix,y+D−1 − Ix,y−1

)

/D.

1http://www.nvidia.com/cuda
2http://www.khronos.org/opencl

1// for each column

2for(int x = 0; x < W; ++x)

3{ // for each strip of rows

4for(int y0 = 0; y0 < H-D; y0 += T)

5{

6// first phase: convolution

7float sum = 0.0f;

8for(int k = 0; k < D; ++k)

9sum += I[(y0+k)*W + x];

10O[y0*W + x] = sum / (float)D;

11
12// second phase: rolling sum

13for(int dy = 1; dy < min(T,H-D-y0); ++dy)

14{

15int y = y0 + dy;

16sum -= I[(y-1)*W + x];

17sum += I[(y-1+D)*W + x];

18O[y*W + x] = sum / (float)D;

19}

20}

21}

Listing 1: Vertical mean image filter algorithm in C.

This algorithm performs Θ(N + ND/T) reads and arith-

metic operations, significantly reducing memory bandwidth

and compute requirements for T ≫ D. Since the x and y0
loops carry no dependences, up to ⌈N/T ⌉ threads can run in

parallel.

Note that since the order of arithmetic operations is un-

defined in (1), both the naı̈ve and scalable algorithms are

functionally, if not arithmetically, equivalent.

Clearly, the optimal value of T depends on problem param-

eters (W , H and D), and device parameters (e.g. the number

of cores and memory partitions). Thus, in §II-C we use the

iterative compilation approach to find the optimum.

B. Efficient implementation

Implementing the vertical mean filter efficiently on a GPU

requires mapping the iteration space onto threads, which are

grouped into blocks located in a grid.

The most natural iteration space mapping is into thread

blocks on a 2D grid, with each block producing a rectangular

WPBX × WPBY section of the output image. However, if the

image width is not a multiple of WPBX, significant portions

of thread blocks covering the right edge of the image may be

unused, as illustrated by Figure 1a.

This issue can be alleviated by mapping into thread blocks

on a 1D grid that covers the image by wrapping around

the right edge, as illustrated by Figure 1b. As we show in

§II-C, a mapping that maximises thread utilisation suffers from

misalignment, if the image width is not a multiple of the size

WPBX

WPBY

H−D

W

1 2 3

4 5 6

7 8 9

10 11 12

(a) A 2D grid mapping loses efficiency from unused threads off the
right image edge.

WPBY

H−D

WPBX

W

1 2 3

4 5

6 7

8 9 10

85

3

Round to SIMD size

(b) A 1D grid mapping uses its threads more efficiently by wrapping
around the right image edge. For efficiency, it must take into account
alignment, which complicates both memory access and iteration.

Fig. 1: Different mapping strategies result in different utilisa-

tion of threads. Light and dark regions of blocks denote used

and unused threads, respectively.

of the SIMD unit (warp in NVIDIA’s terminology); a better

mapping takes alignment into account by wasting a small

number of threads on the right of the image, thus ensuring

that the first pixel of each row is handled by the first thread

in a SIMD unit.

C. Experimental results

Figure 2 presents experimental results obtained on a dual-

core 3GHz Intel Core 2 Duo E8400 system with 2GiB RAM,

equipped with an NVIDIA GTX 280 card, running 64-bit

Linux Ubuntu 8.04. Code is compiled using CUDA SDK

2.2 and GCC 4.2.4 with the “-O3” optimisation settings.

We measure the kernel execution time only and get the best

throughput out of 50 runs.

In all the experiments, we fix the number of threads per

block at 128 (128×1), as we nearly achieve the peak memory

efficiency with this setting:≈ 10 Mpixel/s× 4 bytes/pixel× (2

reads + 1 write) = 120 GB/s (close to the bandwidth of aligned

copy on this card). Thus, WPBX = 128 and WPBY = T .

Figure 2a shows that the 1D and 2D grid versions are similar

in throughput when applied to a 5120 × 3200 image, where

5120 is a multiple of 128 pixels. The throughput is below 1000

Mpixel/s when each thread produces a single pixel, climbs

fast with increasing serial effiency, achieving (by the 1D grid

version) the peak throughput of 9884 Mpixel/s when T = 355,
and then declines with decreasing parallelism.

When applied to a 5121 × 3200 image, however, the 2D

grid version only achieves 7017 Mpixel/s, as shown by the

bottom line in Figure 2b. Whilst we allocate memory using

the cudaMallocPitch function, which pads the image

to a multiple of 16 pixels to enable global memory access

coalescing (5136 pixels in this case), such allocation leads

to DRAM partition conflicts. We remedy the conflicts by

manually padding the image to a multiple of 32, 64 and 128.

As the results of padding to a multiple of 64 and 128 are

barely distinguishable, we fix the image padding at a multiple

of 64 (5184 pixels) for all subsequent experiments.

Figure 2c shows that the 1D grid mapping that maximises

thread utilisation by wrapping on 5121 pixels only achieves

5998 Mpixel/s, whilst wrapping on the image padding of 5184

pixels performs worse than wrapping on the warp size multiple

of 5152 pixels.

Figure 2d summarises the throughput for the misaligned

image padded to 5184 pixels: the 1D grid version wrapped on

5152 pixels achieves 9575 Mpixel/s at T = 396, whilst the 2D
grid version achieves only 9056 Mpixel/s at T = 409; thus,
the 1D grid version performs 6% better than the 2D grid one.

III. TOWARDS METAPROGRAMMING

To ease the programmer’s burden of mapping and tuning

computation kernels to GPU architectures, we propose ex-

tending a kernel’s description with decoupled Access/Execute

metadata. Execute metadata for a kernel describes its iteration

space ordering and partitioning. Access metadata for a kernel

describes memory locations the kernel may access on each

iteration.

1// Array descriptors (C array wrappers)

2Array2D<float> arrayI(&I[0][0], W, H);

3Array2D<float> arrayO(&O[0][0], W, H-D);

4
5// Execute metadata: parallel iteration space

6IterationSpace1D x(0,W);

7IterationSpace1D y(0,H-D);

8IterationSpace2D iterXY(x,y);

9
10// Access metadata: iteration space -> memory

11VerticalStrip2D_R accessI(iterXY, arrayI, D);

12Point2D_W accessO(iterXY, arrayO);

Listing 2: Æcute metadata for the vertical mean image filter.

We give an example of Æcute metadata for the vertical mean

image kernel in Listing 2. In lines 1–3 we wrap accesses

to plain C arrays I[W][H] and O[W][H-D] into Æcute

array descriptors arrayI and arrayO to cleanse the kernel

of uncontrolled side-effects. In lines 5–8 we construct a 2D

iteration space descriptor iterXY from 1D descriptors x and

y, having the same bounds as the output image dimensions.

By default, an iteration space is parallel in every dimension.

Finally, in lines 10–12 we specify that on each iteration of the

2D iteration space the kernel reads a vertical strip of D pixels

from arrayI and writes a single pixel to arrayO.

Similar to Stanford’s Sequoia language [3], we target sys-

tems with software-managed memory hierarchies and seek to

separate a high-level algorithm representation from a system-

specific mapping. Unlike Sequoia, we base our mapping on

partitioning (manually or automatically) an iteration space into

disjoint subspaces and infer memory access of subspaces from

Æcute metadata.

For example, for GPU-accelerated systems, a hierarchy of

iteration space partitions can specify subspaces to be executed:

• at the lowest level, by individual threads:

// 1xT outputs per thread

iterXY.partitionThreads(1,T);

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 0 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t
(M

p
ix

e
l/
s
)

Output pixels per thread (T)

W=5120, H=3200, D=40, TPBX=128, TPBY=1

2D
1D

(a) 5120× 3200 image. 2D grid; 1D grid.

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 0 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t
(M

p
ix

e
l/
s
)

Output pixels per thread (T)

W=5121, H=3200, D=40, TPBX=128, TPBY=1

2D, padded to 5136
2D, padded to 5152
2D, padded to 5184
2D, padded to 5248

(b) 5121× 3200 image. 2D grid. Data padded to multiples of 16, 32, 64, and
128 pixels.

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 0 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t
(M

p
ix

e
l/
s
)

Output pixels per thread (T)

W=5121 (padded to 5184), H=3200, D=40, TPBX=128, TPBY=1)

1D wrapped on 5121
1D wrapped on 5136
1D wrapped on 5152
1D wrapped on 5184

(c) 5121× 3200 image. Data padded 5184 (a multiple of 64) pixels.
1D grid wrapped on the image width and multiples of 16, 32 and 64 pixels.

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 0 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t
(M

p
ix

e
l/
s
)

Output pixels per thread (T)

W=5121 (padded to 5184), H=3200, D=40, TPBX=128, TPBY=1

2D
1D wrapped on 5152

(d) 5121× 3200 image. Data padded to 5184 (a multiple of 64) pixels.
2D grid; 1D grid wrapped on 5152 (a multiple of 32) pixels.

Fig. 2: Comparison of different mappings with various image sizes, data padding and thread wrapping alignment.

• at the middle level, by blocks of possibly cooperating

threads:

// 128xT outputs per block

iterXY.partitionBlocks(128,T);

• at the highest level, by possibly cooperating compute

devices:

// (W/2)x(H-D) outputs per device

iterXY.partitionDevices(W/2,H-D)

IV. WORK IN PROGRESS

We are working on a tool that will take a high-level

algorithm representation and generate efficient device-specific

OpenCL code. The representation will be kept similar to C++,

e.g. as in Listing 1 with accesses to C arrays replaced with

accesses to Æcute array descriptors as in Listing 2. Code

generation will be particularly oriented towards effectively

orchestrating data movement in software-managed memory

hierarchies, including automatically handling such low-level

details as data alignment and padding.

REFERENCES

[1] L. W. Howes, A. Lokhmotov, A. F. Donaldson, and P. H. Kelly, “Deriving
efficient data movement from decoupled Access/Execute specifications,”
in Proceedings of the 4th International conference on High-Performance

Embedded Architectures and Compilers (HiPEAC), ser. LNCS, vol. 5409.
Springer, 2009, pp. 168–182.

[2] C. Lin and L. Snyder, Principles of Parallel Programming, 1st ed.
Boston, MA, USA: Addison-Wesley, 2008.

[3] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park,
M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Sequoia:
programming the memory hierarchy,” in Proceedings of the ACM/IEEE

conference on Supercomputing, 2006, p. 83.

