
Accelerating Particle Image Velocimetry Using
Hybrid Architectures

Vivek Venugopal ∗, Cameron D. Patterson ∗, Kevin Shinpaugh †
∗Bradley Department of Electrical and Computer Engineering

† Advanced Research Computing
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061
Email: vivekv@vt.edu, cdp@vt.edu, kashin@vt.edu

Abstract—High Performance Computing (HPC) applications
are mapped to a cluster of multi-core processors communicating
using high speed interconnects. More computational power is
harnessed with the addition of hardware accelerators such as
Graphics Processing Unit (GPU) cards and Field Programmable
Gate Arrays (FPGAs). Particle Image Velocimetry (PIV) is
an embarrassingly parallel application that can benefit from
acceleration using hybrid architectures. The PIV application
is mapped to a Nvidia GPU system, resulting in 3x speedup
over a dual quad-core Intel processor implementation. The
design methodology used to implement the PIV application on
a specialized FPGA platform under development is described in
brief and the resulting performance benefit is analyzed.

I. PARTICLE IMAGE VELOCIMETRY ALGORITHM

Cardiovascular Disease (CVD) is the leading cause of death
in the United States and accounts for more than 36.3 % of all
fatalities for 2006 [1]. Early and accurate detection of CVD
would increase the median human life by a significant percent-
age. To facilitate this detection, the Advanced Experimental
Thermofluids Engineering (AEThER) Lab at Virginia Tech is
involved in the area of cardiovascular fluid dynamics. Their
research focuses on the effects of coronary stents on blood
flow, and the role of pressure gradients in the development
of diastolic dysfunction and heart failure. The experimental
method [2] involves using the data intensive Particle Image
Velocimetry (PIV) technique for flow measurement and visu-
alization. The PIV technique utilizes a high intensity pulsed
laser sheet to illuminate a flow field seeded with reflective or
fluorescent particles. The motion of the particles are captured
using high speed digital cameras that produce images of the
particle patterns. These images are correlated using the PIV
algorithm to measure the fluid velocity, which influences the
stress exerted on the arterial walls. The experimental setup
produces large amount of data (each case results in 1250 image
pairs × 5MB = 6.25 GB). On an average, there are 100 cases
generated for each stent configuration from a total of 20 stent
configurations (about 500 GB of data for each case).

The PIV algorithm shown in Figure 1 consists of interro-
gation windows to capture the flow field. The window sizes
are 16×16, 32×32 or 64×64 pixels. Each image is broken
down into overlapping zones and the corresponding zones
from both images are correlated. The peak detection is done

FFT

FFT

Multiplication IFFT

motion 
vector 

Reduction

t

t + dt
Image 1

Image 2

zone 1

zone 2

Fig. 1. The PIV algorithm

using the Fast Fourier Transfor (FFT) block, which is then
translated to depict the direction of the particles within the
zone. The reduction block consists of a sub-pixel algorithm
and a filtering subroutine to compute the velocity value. The
complete algorithm was initially coded by the AEThER lab
using their native FlowIQ program. The FlowIQ program
analyses each image pair in 16 minutes on a 2GHz Xeon
processor. This would take about 2.6 years for the complete
dataset without accounting for image pre-processing and post-
processing analysis.

We implement the PIV algorithm in C with the FFT routines
ported using the fast FFTW library [3]. The sequential C pro-
gram is executed on Virginia Tech’s System G supercomputer
and provides a benchmark for comparison with implementa-
tion on GPGPU and FPGA platforms. Section II describes the
Compute Unified Device Architecture (CUDA) programming
model used in the GPU architecture. Section III describes
the PRO-PART design flow for FPGA implementation in
brief. Section IV presents the experimental results and the
concluding remarks are given in section V.

II. COMPUTE UNIFIED DEVICE ARCHITECTURE

General Purpose computation on Graphics Processing Units
(GPGPU) is enhanced by the Nvidia’s Compute Unified De-
vice Architecture (CUDA), where the GPU is used as a multi-
core co-processor in addition to graphics rendering. CUDA
presents a heterogeneous programming model, where the GPU
can be used in conjunction with the CPU for parallel execution.
The Nvidia Tesla 10-series architecture [4] consists of 30
streaming multi-processors with 8 cores each as shown in
Figure 2. All the 8 streaming processors have common access
to 16 KB of shared memory within a multi-processor. Each



multiprocessor has one set of 32-bit registers per processor,
constant memory and texture caches. Each streaming core can
execute the same instruction on different data making it similar
to a Single Instruction Multiple Data (SIMD) processor. The
multi-processors communicate with the CPU through the GPU
memory using the PCI Express interface.

Shared Memory

Registers

Processor 1

Registers

Processor 2

Registers

Processor 8
Instruction 

Unit

Constant
 Cache

Texture
 Cache

Multiprocessor 1

Multiprocessor 2

Multiprocessor 30

GPU

GPU memory

Fig. 2. CUDA hardware model for Tesla 10-series architecture

Block 
(0,0)

Block 
(0,1)

Block 
(0,2)

Block 
(1,0)

Block 
(1,1)

Block 
(1,2)

Block 
(0,0)

Block 
(0,1)

Block 
(0,2)

Block 
(1,0)

Block 
(1,1)

Block 
(1,2)

Thread 
(0,0)

Thread 
(0,1)

Thread 
(0,2)

Thread 
(0,3)

Thread 
(1,0)

Thread 
(1,1)

Thread 
(1,2)

Thread 
(1,3)

Thread 
(2,0)

Thread 
(2,1)

Thread 
(2,2)

Thread 
(2,3)

Block (1,1)

Grid

kernel 1

kernel 2

Device (GPU)Host (CPU)

Fig. 3. CUDA programming model

From a programmer’s point of view, the CUDA model
in Figure 3 represents the GPU as a multi-threaded parallel
architecture. The CPU is referred to as the host and the GPU is
referred to as the device. CUDA assumes that the host and the
device have separate accesses to their memory, also referred to
as host memory and device memory. The CUDA execution is
based on threads and a collection of threads is called a block. A
group of blocks can be assigned to a single multi-processor and
time-share their execution. A grid constitutes of a collection
of blocks in a single execution. Each thread and block can be
accessed within the thread using a unique identifier. The kernel
is the code executed on each thread. Using the thread and block
identifier, the thread performs the kernel task on its part of the
data. Multiple kernels can be called by an algorithm and the
kernels share data through the global memory. Synchronization
barrier is available between threads executing inside a block.
However, there is no synchronization between the blocks
executing within a kernel. The threads from multiple blocks
are synchronized after the end of the kernel execution. The
CUDA API consists of a set of library functions, which are
extensions of the C language. The nvcc compiler generates
executable code for the CUDA device. The CUDA compiler
uses the FFTW library for FFT computation.

III. PRO-PART DESIGN FLOW

A multi-core Streaming Architecture without Flow Con-
trol (SAFC) testbed is developed using the Xilinx ML310
Embedded Development board consisting of a Virtex-II Pro
XC2VP30 FPGA. Each ML310 is configured with a mesh
of PEs and the on-board communication between the PEs is
handled using the Xilinx FSL interface [5]. The FSL interface
is an example of point-to-point interconnect and suits the
research focus of this work. The ML310 boards are physically
connected by InfiniBand cables in a mesh topology. The off-
board communication is facilitated by using Xilinx’s simple
and lightweight Aurora protocol [6]. This specialized multi-
core platform is called NOFIS, because the platform consists
of a Network Of FPGAs with Integrated Aurora Switches, as
shown in Figure 4.

PE1 PE2

PE3

Aurora switches

ML310 board 1

FSL

FSL

PE4Au
ro

ra
 s

wi
tc

he
s Aurora switches

Aurora switches

PE1 PE2

PE3

Aurora switches

ML310 board 2

FSL

FSL

PE4Au
ro

ra
 s

wi
tc

he
s Aurora switches

Aurora switches

Aurora

Fig. 4. Multi-core SAFC hardware: NOFIS platform

PRO-PART 
Design flow

NOFIS platform

+

Input specifications

SFG representation 
of application 

algorithm

component 
specification of 

implementation platform

SAFC dataflow 
capture using 

SFG

structure and 
components 
specification

partitioning and 
communication resource 

specification

configure and generate 
values for communication 

cores

mapping to hardware

automated

Fig. 5. PRO-PART design flow

The design methodology provides a formalism to describe
the synchronization problems in streaming dataflow architec-
tures. The proposed methodology is referred to as PRO-PART
design flow, due to the significant process partitioning stage.
The PRO-PART design flow shown in Figure 5 takes the SAFC



Flow Graph and platform specification as inputs. The PRO-
PART design flow automates partitioning of the processes and
scheduling of the communication resources. Also, the design
flow generates values for the customizable communication
cores without iterated redesign. The embedded flow control
and the communication resource parameters are mapped on
the hardware platform.

IV. EXPERIMENTAL RESULTS

System G consists of 324 Apple Mac Pro nodes with 2 quad-
core Intel Xeon processors and 8GB of RAM per node running
a 64-bit version of Linux CentOS. The CPU benchmark was
executed on a single node using C and the fast FFTW library.
The CUDA benchmarks were obtained using Nvidia’s Tesla
C1060 GPU installed on a System G node. The Tesla C1060
GPU consists of 240 streaming processor cores clocked at
1.3 GHz with 4 GB onboard memory and utilizes a PCI
Express x16 slot. The sequential C PIV program consists of 15
functions called repeatedly to find the 3096 indexes, indicating
the flow displacement in the XY direction. Each function
performs data processing on 4096 elements representing the
64×64 window size. The CUDA programming model supports
thread-based parallel processing, where each function in C is
represented by a kernel executed N times in parallel by N
different threads. By using the CUDA approach, each kernel
computes the 4096 elements for 3096 positions in parallel.

0

0.313

0.625

0.938

1.250

Execution Device

T
im

e
 i
n

 s
e
c
o

n
d

s

CPU

GPU

FPGA
1.05

0.341

0.65

Fig. 6. Execution time comparison of the three platforms

The PIV application exhibits linear speedup to the number
of cores available for execution. Figure 6 shows the execution
time required for computing all the 3096 indices of the
PIV algorithm. The NVIDIA CUDA 2.2 API with memcopy
implementation exhibits a speedup of 3x over the sequential
C program. The performance of the PIV algorithm on the
NOFIS platform is estimated using the number of clock cycles
required for each of the custom computational blocks, the
latency of the Aurora interface and the number of instructions
executed per clock cycle.

The bottleneck in the CUDA implementation occurs when
data has to be copied from device memory to host memory
or vice-versa. Figure 7 shows the comparison of the GPU
execution time for three different configurations. The PIV
application is implemented with the memcopy function call

using the CUDA 2.1 and CUDA 2.2 APIs. The CUDA 2.2 API
introduces new function calls that allow host memory to be
allocated and mapped to device memory using pinned memory
buffers (zerocopy feature). The CUDA 2.2 API implementation
with the zerocopy feature exhibits maximum processing time
on the GPU. This may be due to the discrete GPU card, as
the memory is not cached by the GPU.

zone_create

real2complex

complex_mul

complex_conj

conj_symm

c2c_radix2_sp

find_corrmax

transpose

x_field

y_field

indx_reorder

meshgrid_x

meshgrid_y

fft_indx

cc_indx

memcopy

0 125000 250000 375000 500000

GPU time in usecs

C
U

D
A

 k
e
rn

e
l 
fu

n
c
ti
o

n
s

CUDA 2.1 with memcopy
CUDA 2.2 with memcopy
CUDA 2.2 with zerocopy

Fig. 7. CUDA profile graph comparison for three different configurations

V. CONCLUSION

Nvidia’s Tesla C1060 GPU provides computational speedup
as compared to both the sequential CPU implementation
and the NOFIS implementation for the PIV application. The
synchronization and the latency in data movement can be opti-
mized between the FPGAs by having custom communication
interfaces without an Operating System (OS) overhead. The
PRO-PART design flow facilitates a fast and easier mapping
of a streaming application on the specialized NOFIS platform
with a significant advantage in development time.

ACKNOWLEDGMENT

The authors would like to thank Dr. Pavlos P. Vlachos, John
Charonko and Adric Eckstein of the AEThER lab at Virginia
Tech for their guidance on the PIV technique. Many thanks are
also due to Dr. Srinidhi Varadarajan for providing access to
System G. The Nvidia Tesla C1060 GPU was funded through
the Nvidia Professor Partnership program.

REFERENCES

[1] American Heart Association. (Last Accessed: February 2009)
Cardiovascular Disease Statistics. [Online]. Available: http://www.
americanheart.org/presenter.jhtml?identifier=4478

[2] A. Eckstein, J. Charonko, and P. Vlachos, “Phase correlation processing
for DPIV measurements,” Experiments in Fluids, 2008. [Online].
Available: http://dx.doi.org/10.1007/s00348-008-0492-6

[3] M. Frigo and S. G. Johnson, FFTW3.2 manual, 2007.
[4] Nvidia Inc. (Last Accessed: February 2008) Nvidia Tesla C1060

GPU Computing Processor. [Online]. Available: {http://www.nvidia.
com/object/product tesla c1060 us.html}

[5] Xilinx Inc., Fast Simplex Link (FSL) Bus (v2.11a) manual, Last
Accessed: June 2008. [Online]. Available: http://www.xilinx.com/
support/documentation/ip documentation/fsl v20.pd%f

[6] Xilinx Inc., LogiCORE Aurora v2.8, Last Accessed: June 2008. [Online].
Available: http://www.xilinx.com/aurora/auroramember/ug061.pdf


