
Breaking the Sequential Dependency and Extracting Parallelism out of Recurrence Equations
―Sample Application to Options Pricing in Finance and HMMER in Computational Biology

Narayan Ganesan, Roger D. Chamberlain and Jeremy Buhler
Department of Computer Science and Engineering, Washington University in St. Louis

This research has been supported by NIH grant R42 HG003225 and Exegy, Inc. R.D. Chamberlain is a principal in Exegy.

Introduction
•Dynamic Programming problems and Uniform Recurrence Equations are ubiquitous.

•Many problems impose a sequential dependency among cells and are evaluated serially.

•The problem sizes are large and the number of problems is growing exponentially.

•Areas of applications:

•Computational Biology – Sequence and Model Analysis(Smith-Waterman, Protein Motif
Finding, RNA Folding etc.)

•Finance – Lattice Methods for Options Pricing(Binomial and Trinomial Trees)

•Numerical solutions to differential equations

•Sorting etc.

•Need to efficiently parallelize the evaluation of recurrence equations(GPU/FPGAs/SIMD)

•Two sample applications from diverse fields are implemented using this novel method.

Results and Conclusion

Application 1: Binomial Tree Options Pricing

S

uS

dS

Sd 2

S

Su2

Su3

uS

dS

Sd 3

Sd 4

Sd 2

S

Su2

Su4

up

up

up

up

up

up

dp

dp

dp

dp

up up
dp

dp

dp

dp

dp

dp

up

T0

dT

•Nodes of the Binomial Tree are different asset price possibilities

•The nodes at the same depth correspond to single time instant

•The binomial tree can be represented by a Dynamic Programming
matrix.

•The options price at the root node can then be evaluated starting
from leaves and working back through time sequentially.

•A suitable parallel architecture would evaluate the cells
corresponding to a single time-instant in parallel

•Serial Implementation - Parallel Implementation –

•In the financial world a millisecond delay could mean significant
loss, so the parallel implementation is targeted for speed-up.

)(TΘ)(2TΘ

NVIDIA GPU – CUDA Programming Interface

. . .
Threads

Thread Blocks

. . .

Global Memory

Physical:

•8 Scalar Processors within a
MultiProcessor (MP) can execute 16
threads in parallel each.

•128 way parallelism per MP or 256
to hide memory access latency.

•10-100s of MPs in a GPU part.

Programming:

•Multiple thread blocks per MP

•Threads within a block can access
fast shared memory.

•Threads across blocks can
communicate via global memory.

•Data-Parallel applications can
experience tremendous speed-ups.

•The algorithm preserves locality of computation hence could
experience speed-ups on other architectures as well(FPGA/GPU)
•Optimal speedup is given by, where N is number of

sequentially dependent cells and L, the communication latency.
L

N
22

GPU Model No. of MPs Speedup
Single Multiprocessor
@504MHz

1 1.1x

GeForce 8600 4 4.3x

GTX260 24 27x

Tesla C1060 30 32x

•HMMER Search for a model of 507 positions and sequences of
total length 65416. Baseline is single core of Intel Core2Duo@3GHz

•Binomial Tree of depth 1024 was partitioned into 4
consecutive segments and evaluated on a GeForce 8600 with
latency to global memory at ~500 clks in order to obtain a
speedup of 2x over NVIDIA’s parallel implementation.

Implementation: Parallelization and Acceleration
•The dependency between the cells can be broken and resolved later due to the associative nature of the
operators in the recurrence equations.

•This property can be exploited to evaluate the cells independently and in parallel – even if the cells are
sequentially dependent to begin with.

•Hence this approach converts data-dependent computation to data-parallel computation with minimum
dependency, thus taking advantage of the parallel processing capability of GPUs.

T0

dT

MP1 MP2 MPn…
Multiprocessors

Binomial Tree Options Pricing •Each MP evaluates a consecutive
segment of the array in parallel.

•The boundary values are
communicated via global memory

•Hence the eventual speed-up would
depend on communication latency.

•Each Row is partitioned and the partitions are
evaluated independently and in parallel.

•Threads of a single thread block are assigned to the
partitions which communicate via fast shared memory.

HMMER Search
0 M-1

Row i

Thread Block

Application 2: Protein Motif Finding- HMMER search

•Match a given protein sequence to a given HMM.

•HMM is described by the corresponding transition and emission probabilities.

•Viterbi Algorithm is used to evaluate the corresponding costs of matching.

•Gives rise to dependency on local cells of the dynamic programming matrix.

•Time Complexity – product of model and sequence lengths, |)|.|(| SMΘ

M1 M2 M3

D2

M4 M5

I2 I3 I4

D3 D4

J

BS

I1

E TN C

Plan7 HMM

Protein Sequence: CFLFLVLFVAQEVVVQSEAKTCE

Dynamic Programming Matrix:

•Each cell is dependent on three
adjacent cells and the terminal
cell from the previous row.

•This dependency imposes a
serial restriction on their
evaluation.

Model PositionsS
e
q
u
e
n
c
e

0 M-1

L-1

	Slide Number 1

