Cell-Based Clusters

- LANL RoadRunner
- Three others on top 500 (LANL, IBM, U Warsaw)
- Barcelona Mare Nostrum cell prototype
- Often have mixed or hierarchical node architecture
 - Tri-blades

Cell Processor Architecture

- Mixed architecture
- One power processor
- Eight synergistic processing units
- Hierarchical memory
- System memory
- Private SPU memory

Challenges Presented

- Architectural challenges
 - Multiple processor architectures at the same time
 - Multiple memory address spaces
- Programming challenges
 - Breaking program up into the right size (small) pieces
 - Writing the computational kernels
 - Manual data movement through the different levels of memory
 - Understanding memory usage patterns

Cell Port of TotalView

- Linux Cell support
 - Shows SPU threads
 - Asynchronous thread control
 - SPU and PPC threads have separate instruction sets
 - Each thread has its own address space
 - Correct addressing on PPU and SPU
 - Lays groundwork for debugging other hybrid computing architectures

TotalView Debugger

- C, C++, Fortran 77, Fortran90, UPC
- Complex language features
- Wide compiler and platform support
- Blue Gene/L and /P
- Linux x86, x86-64, Power, Cell
- Mac, Cray XT, and others
- Parallel debugging
 - MPI, pthreads, OpenMP, UPC
- Memory debugging capabilities
 - Integrated into the debugger
 - Remote Display Client
 - Graphical user interface
 - Simple things are easy
 - Advanced operations available
 - Visualization
- Scripting
 - CLI and TVScript

NVIDIA GPU accelerator

- Distinct processor architecture
 - Compared to host CPU
- Many more cores
 - Hundreds of streaming processors
 - Potentially 10k+ thread contexts

Cuda and OpenCL

- Languages to support directly programming applications for GP-GPU
 - Cuda is NVIDIA hardware-specific
 - Compilers and tool chain available now
 - OpenCL is device-independent
 - Being defined

Cuda/NVIDIA Port of TotalView

- Currently in development
 - Building on many of the changes from the Cell port
- Planned characteristics
 - Full visibility of all device/kernel threads
 - Threads shown as part of the parent unix process
 - Correctly handle instruction set differences
 - Correctly handle the hierarchical memory
 - Provide thread control within architectural limitations
 - Provide allocation tracking of the device memory
 - Memory debugging

Cuda/NVIDIA Early Experience Program

- Way for users to participate in the development of TotalView for Cuda
 - Provide input into the design and development
 - Provide feedback on questions
 - How to group threads and provide status data without overwhelming the user
 - How to manage and control threads
 - How to display data from 10k+ threads
 - Get early access to pre-release software before it is available to the public
 - NDA program
 - Sign up now
 - Contact Chris Gottbrath at TotalViewTech: Chris.Gottbrath@totalviewtech.com

Cross and Heterogeneous Debugging

- Heterogeneous and cross debugging support
 - Mixture of Cell + X86-64 Linux targets in one session
 - Linux-Power32 and Power64 from a Linux-x86-64 host
 - Linux-x86 from a Linux-x86-64