
Accelerating past the petascale

Robert J. Harrison
harrisonrj@ornl.gov

robert.harrison@utk.edu

mailto:harrisonrj@ornl.gov
mailto:robert.harrison@utk.edu

07/29/09 Robert J. Harrison, UT/ORNL 2

Mission of the ORNL National Leadership
Computing Facility (NLCF)

 field the most powerful capability
computers for scientific research

 select a few time sensitive problems of
national importance that can take advantage
of these systems

 join forces with the selected scientific
teams to deliver breakthrough science.

4ORNL INCITE 2008 Allocations
by Discipline

Solar Physics
3.3%

Accelerator Physics
3.1%

Astrophysics
14.1%

Biology
4.8%

Chemistry
7.4%

Climate
13.6%

Computer Science
2.8%

Engineering
0.56%

Combustion
14.4%

Nuclear Physics
5.2%

Atomic Physics
1.4%

QCD
4.9%

Geosciences
1.2%

Fusion
7.2%

Materials Science
16.0%

INCITE: Innovative and Novel Computational Impact on Theory and Experiment

07/29/09 Robert J. Harrison, UT/ORNL 5

5

Univ. of Tennessee & ORNL Partnership
National Institute for Computational Sciences
• UT is building a new NSF supercomputer center from the ground up

– Building on strengths of UT and ORNL

– Operational in May 2008

• Series of computers culminating in a 1 PF system in 2009
– Initial delivery (May 2008)

– 4512 quad-core Opteron processors (170 TF)

– Cray “Baker” (2009)

– Multi-core Opteron processors; 100 TB; 2.3 PB of disk space

5 Managed by UT-Battelle
fo the Department of Energy

07/29/09 Robert J. Harrison, UT/ORNL 6

Leadership computing in chemistry

• Definitive, benchmark computations
– The scale and fidelity of petascale simulation will

answer truly hard questions about real systems.
Fully quantitative computations are central to
fundamental understanding and to enabling rational
design.

• Integration of experiment and theory
– Fast turnaround of reliable simulations is already

enabling the intimate integration of theory and
simulation into chemistry, which is a predominantly
experimental discipline.

07/29/09 Robert J. Harrison, UT/ORNL Joint Insititute of Computational Science7

An Integrated Approach to the
Rational Design of Chemical Catalysts
NCCS Incite Project

Robert J. Harrison: PI

Edoardo Aprà
Jerzy Bernholc
A.C. Buchanan III
Marco Buongiorno Nardelli
James M. Caruthers
W. Nicholas Delgass
David A. Dixon
Sharon Hammes-Schiffer
Duane D. Johnson
Manos Mavrikakis
Vincent Meunier
Mathew Neurock
Steven H. Overbury
William F. Schneider
William A. Shelton
David Sherrill
Bobby G. Sumpter
Kendall T. Thomson
Roberto Ansaloni
Carlo Cavazzoni

Oak Ridge National Laboratory,
University of Tennessee

Oak Ridge National Laboratory
North Carolina State University
Oak Ridge National Laboratory
North Carolina State University
Purdue University
Purdue University
University of Alabama
Pennsylvania State University
University of Illinois at Urbana Champaign
University of Wisconsin at Madison
Oak Ridge National Laboratory
University of Virginia
Oak Ridge National Laboratory
University of Notre Dame
Oak Ridge National Laboratory
Georgia Institute of Technology
Oak Ridge National Laboratory
Purdue University
Cray
CINECA, Italy

4/20/2007 Robert J. Harrison, UT/ORNL Joint Insititute of Computational Science8

p-doped tube : holes are
transferred from F4-TCNQ

to the nanotube

Amphoteric Doping of Carbon Nanotubes by Encapsulation of
Organic Molecules: Electronic Transport and Quantum Conductance

n-doped tube : holes are
transferred from the tube

to TTF and TDAE

Meunier, Sumpter

07/29/09 Robert J. Harrison, UT/ORNL Joint Insititute of Computational Science9

F4TCNQ: structure and transport

parallel

perpendicular

(a)

(b)

(c)

E
ne

rg
y

(m
eV

)

C
on

du
ct

an
ce

 (
G

0)
C

ur
re

nt

Voltage (V)

Energy (eV)

Angle (degrees)

Kalinin, Meunier, Sumpter

V2O5 nanotubes

E. Aprà and B. Sumpter

● Applications in energy storage (capacitor)
● V2O5, Nb2O5, and Ta2O5 armchair and zigzag
 and for different diameters

● Will transition metal oxide tubes maintain tubular
 structure when N is substituted for O?

11

NWChem port for the Cray-XT
E. Aprà & V.Tipparaju, ORNL

• Custom ARMCI port uses the Portals library
for inter-node communication

• SMP aware: uses SysV shared memory for
intra-node communication

• Server-layer for calls
that do not map
directly onto the
network

CCSD(T) run on Cray XT4

C25H25NO

52 atoms
503 basis functions

Cc-pvdz basis

E. Aprà

CCSD(T) run on Cray XT5 : 18 water

(H2O)18

54 atoms
918 basis functions
Cc-pvtz(-f) basis

FP performance
 at 90K cores:
358 TFlops

E. Aprà

CCSD(T) run on Cray XT5 : 20 water

(H2O)20

60 atoms
1020 basis functions

Cc-pvtz(-f) basis

Floating-Point performance
 at 92K cores:
475 TFlops
Efficiency > 50% of peak

E. Aprà

07/29/09 Robert J. Harrison, UT/ORNL 15

Next generation ORNL NLCF

• ORNL has proposed a system to meet DOE's
requirement for 20-40 PF of compute
capability split between the Oak Ridge and
Argonne LCF centers

• ORNL's proposed system will be based on
accelerator technology
– includes software development environment

• We plan to deploy the system in late 2011 with
users getting access in 2012

• Watch this space for more details soon

 http://www.nccs.gov/

http://www.nccs.gov/

07/29/09 Robert J. Harrison, UT/ORNL 16

Why accelerators and why now?

• Path to exascale
– power 0.1 → 100 GFLOP/Watt

– memory 0.3 → 0.03 byte/FLOP

– cores 8 → 64-1024+ per node

– number of cores 100K → 100M

– concurrency 106 → 109

• Must express & exploit parallelism at all levels
– Currently only have coarse (MPI) and medium

(within SMP) granularity

• Mainstream CPUs no longer provide sufficient
density of computation – convergence when/if?

07/29/09 Robert J. Harrison, UT/ORNL 17

O(1) programmers
O(10,000) nodes
O(100,000) processors
O(100,000,000) threads
• Complexity kills … sequential or parallel

• Expressing/managing concurrency at the
petascale
– It is too trite to say that the parallelism is in the physics

– Must express and discover parallelism at more levels

– Low level tools (MPI, Co-Array Fortran, UPC, …) don’t
discover parallelism, hide complexity, ease abstraction

• Management of the memory hierarchy
– Memory will be deeper ; less vendor uniformity

– Need tools to automate and manage, even at runtime

07/29/09 Robert J. Harrison, UT/ORNL 18

GPGPUs v.s. CPUs

• How to rationalize the extreme acceleration
seen in published “benchmarks” comparing
GPUs to x86 CPUs

– 100x, 200x, 400x, ... !!!???

– What is attributable to hardware?

– What is due to compilers/libraries?

– What is the effort involved?

– What should we be promising users of our S/W?

07/29/09 Robert J. Harrison, UT/ORNL 19

Concrete example hardware

• Intel Core i7 920 @ 2.67 GHz, 1.33 GHz DDR3
– Quad core

• Each core 4 double and 8 single precision FLOP/cycle
• 25 (35) GB/s memory bandwidth
• 32KB L1/core data, 256KB L2/core, 8M L3/shared

• NVIDIA Tesla C1060 @ 1.3 GHz
– 240 cores

• Each core 1 single precision MADD + 1 MUL / cycle
and 1/8 double precision MADD / cycle

• 102 GB/s memory bandwidth
• 64KB registers + 16KB shmem + 8KB texture cache +

64KB constant cache per MP (i.e., per 8 cores)

07/29/09 Robert J. Harrison, UT/ORNL 20

Concrete example hardware

• Speed Ratios Tesla : Intel 920
– Ratio of single precision FLOP/s 11 : 1

– Ratio of double precision FLOP/s 1.8 : 1

– Memory bandwidth 4 : 1

– On-chip memory 0.51 : 1

• Latencies and latency hiding mechanisms
– Must consider in general

– Should not be relevant for this particular benchmark
(more to this story follows)

07/29/09 Robert J. Harrison, UT/ORNL 21

Concrete example algorithm

• Metropolis Monte Carlo
– General and powerful

algorithm for multi-
dimension integration

– We abuse it to create
a 1D test code

– Reflects real
applications

– Small enough to
fully dissect

〈 x 〉=
∫

0

∞

x e− x dx

∫
0

∞

e− x dx
=1

void kernel(FLOAT& x, FLOAT& p) {
 FLOAT xnew = drand()*FLOAT(23.0);
 FLOAT pnew = exp(-xnew);
 if (pnew > drand()*p) {

x = xnew;
p = pnew;

 }
}

p(x)=exp(-x) --> probability
drand(x) --> uniform ran# [0,1)

07/29/09 Robert J. Harrison, UT/ORNL 22

Sequential algorithm
• N=240*256 independent samples

FLOAT x[N], p[N], sum=0.0;
for (int i=0; i<N; i++) {

x[i] = urand()*FLOAT(23.0);
p[i] = exp(-x[i]);

}
for (int iter=0; iter<NEQ; iter++) {

for (int i=0; i<N; i++) {
kernel(x[i], p[i]);

}
}
for (int iter=0; iter<NCOMPUTE; iter++) {

for (int i=0; i<N; i++) {
kernel(x[i], p[i]);
sum += x[i];

}
}

on x86 drand calls “standard” random() function

initialize

equilibrate

sample

07/29/09 Robert J. Harrison, UT/ORNL 23

CUDA kernel
• Parallelize over independent samples

#define NBLOCK 240
#define NTHREAD 256
#define N NBLOCK*NTHREAD
const FLOAT fac = 1.0/(1ul<<32);
#define srand() unsigned int state = (blockIdx*NTHREAD + threadIdx.x)*3 + 1; \

for (int i=0; i<100; i++) drand();
#define drand() (state = 1103515245U*state + 12345U)*fac
__global__ void kernel(SUMTYPE* psum) {
 srand();
 FLOAT x = drand()*FLOAT(23.0), p = expf(-x);
 for (int iter=0; iter<NEQU; iter++) {
 FLOAT xnew = drand()*FLOAT(23.0), pnew = exp(-xnew);
 if (pnew > drand()*p) { x = xnew; p = pnew; }
 }
 SUMTYPE sum = 0.0;
 for (int iter=0; iter<NCOMPUTE; iter++) {
 FLOAT xnew = drand()*FLOAT(23.0), pnew = exp(-xnew);
 if (pnew > drand()*p) { x = xnew; p = pnew; }
 sum += x;
 }
 psum[blockIdx.x*NTHREAD + threadIdx.x] = sum;
}

drand calls crude LCG optional different precision for accumulator

call fast version
as appropriate

07/29/09 Robert J. Harrison, UT/ORNL 24

CUDA v.s. x86 sequential performance

• Tesla is running
– 850 x GCC and 520 x ICC

• This is a realistic and fair comparison of what is
possible with minimal effort on both platforms

• But it tells us nothing about what is possible if
we try hard

Platform Time/s #cycles/core/iteration

Tesla C1060 + CUDA
single precision

4.0 20.3

Intel i7 single core + GCC
double precision

3410 145

Intel i7 single core + ICC
double precision

2070 88

gcc 4.4.0 with -O3 option icc 11 with -fast option

07/29/09 Robert J. Harrison, UT/ORNL 25

What’s wrong on the Intel CPU?

• Is this a problem with the
– compilers,

– libraries,

– algorithm design, or

– an intrinsic failure of the Intel core?

– Looking ahead, we will conclude that the failure is
a team effort.

• We will see it is not due to
– Hardware support for special functions on the GPU

– Synergy between different GPU features, etc.

07/29/09 Robert J. Harrison, UT/ORNL 26

The poor, misunderstood x86 CPU

• It is not a sequential processor
– It is a multi-issue, out-of-order, heavily pipe-

lined device with SIMD acceleration & 4 cores

• Serial FP code will be too slow by up to ...
– 4x pipeline latency (5x for i7 multiply?)
– 2x SIMD register width (4x in single)
– 2x simultaneous + and * issue
– 4x for using only 1 out of 4 cores
– Total is 4*2*2*4 = 64 (128 in single precision)
– Need VL=80 in double precision (1 core)

• “Fat” loops need shorter VL

07/29/09 Robert J. Harrison, UT/ORNL 27

Vectorizable?

• This seems to
epitomize
sequential code
– 2 rand#, 1 exp(), and 1 if-test

• But a 30-year old Cray compiler would have
automatically vectorized this loop
– manual inline and using ranf()

• So did the CUDA compiler NVCC

• But we’re not aware of an x86 compiler that
will oblige
– Do it by hand

void kernel(FLOAT& x, FLOAT& p) {
 FLOAT xnew = drand()*FLOAT(23.0);
 FLOAT pnew = exp(-xnew);
 if (pnew > drand()*p) {

x = xnew;
p = pnew;

 }
}

for (int i=0; i<N; i++)
 kernel(x[i], p[i]);

07/29/09 Robert J. Harrison, UT/ORNL 28

Hand vectorized kernel
• Mix of VML and hand-coded SSE assembly

double vkernel(int n, double* x, double* p) {
 static double xnew[VL] ALIGNED;
 static double pnew[VL] ALIGNED;
 static double test[VL] ALIGNED;
 vrand(n, test);
 vrand(n, xnew);
 vscale(n, -17.0, xnew, pnew);
 vexp(n, pnew, pnew);
 vmul(n, test, p, test);
 vDmask_lt(n, pnew, test, test);
 vDmerge(n, test, p, pnew, p);
 vDmerge(n, test, x, xnew, x);
 return vsum(n, x);
}

Uses CMPDD to form mask

Uses ANDPD, ANDNPD,
POR to merge vectors
under mask

vectorized version of Brent’s 48-bit LFG,

VML is missing vectorized sum, mask, merge, and fast ran# generator
VML exp is both fast and accurate in LA mode ... EP is unreliable

07/29/09 Robert J. Harrison, UT/ORNL 29

Performance prediction and measurement

• Measured is 23.5 cycles/iteration/core

• Single precision will be exactly 2x as fast since it
just involves 2x wider registers
– Did not measure since am totally fed up of writing asm

Operation Cycles

2 random values 5

1 scale 0.5

1 exp 11

1 mul 0.5

1 compare 0.5

2 merge 4

1 sum 0.5

Total 21

07/29/09 Robert J. Harrison, UT/ORNL 30

Bottom line
• Head-to-head comparison of vectorized single

precision kernels – Tesla:Intel quad core 17.6 : 1
– ~5x speed up in special function evaluation

• Intel VML takes 11 cycles/exp in dp – GCC takes 56 in dp

– 2x speed up by comparing single to single

– 4x speed up by using all 4 cores

• The optimal x86 and CUDA kernels are “identical”
– Loop over blocks to provide coarse parallelism and tile

data into registers/cache/shared memory

– Loop over threads/vector elements to provide SIMD
parallelism and hide memory latency

• Any credible architecture benchmark must back
port the CUDA kernel to the x86 & vectorize it

07/29/09 Robert J. Harrison, UT/ORNL 31

Kudos to CUDA
• SIMT + rigid register and shmem constraints

– Forces efficient program design for algorithms that fit

• NVIDIA GPGPU
– Predicated ops + SFU ease code generation

• x86 compilers ignoring 25 years of knowledge?
– 16-byte alignment problem (not in AMD SSE-128)

– Cray is developing a vectorizing x86 compiler

• The CUDA code structure is optimal even for x86

• MCDUA (Stratton and Hwu)
– Portable solution ... needs full vectorization not just

serial loop plus intrinsics

Multiresolution Adaptive
Numerical Scientific Simulation

Ariana Beste1, George I. Fann1, Robert J. Harrison1,2,
Rebecca Hartman-Baker1, Jun Jia1, Shinichiro Sugiki1

1Oak Ridge National Laboratory, 2University of Tennessee, Knoxville

Gregory Beylkin4, Fernando Perez4, Lucas Monzon4,
Martin Mohlenkamp5 and others

4University of Colorado, 5Ohio University

Hideo Sekino6 and Takeshi Yanai7

6
Toyohashi University of Technology, 7Institute for Molecular Science, Okazaki

harrisonrj@ornl.gov

07/29/09 Robert J. Harrison, UT/ORNL 34

Multiresolution chemistry objectives
• Scaling to 1+M processors ASAP
• Complete elimination of the basis error

– One-electron models (e.g., HF, DFT)
– Pair models (e.g., MP2, CCSD, …)

• Correct scaling of cost with system size
• General approach

– Readily accessible by students and researchers
– Higher level of composition
– Direct computation of chemical energy differences

• New computational approaches
– Fast algorithms with guaranteed precision

35

The mathematicians …

Gregory Beylkin
http://amath.colorado.edu/faculty/beylkin/

George I. Fann
fanngi@ornl.gov

Essential techniques for fast
computation

• Multiresolution

• Low-separation
rank

• Low-operator
rank

V 0⊂V 1⊂⋯⊂V n

V n=V 0V 1−V 0 ⋯ V n−V n−1

f x1, , xn=∑
l=1

M

 l∏
i=1

d

f i
 l
 xiO

∥ f il ∥2=1 l0

A=∑
=1

r

u v
TO

0 v
T v=u

T u=

07/29/09 Robert J. Harrison, UT/ORNL 37

Please forget about wavelets
• They are not central
• Wavelets are a convenient basis for spanning

Vn-Vn-1 and understanding its properties

• But you don’t actually need to use them
– MADNESS does still compute wavelet coefficients,

but Beylkin’s new code does not

• Please remember this …
– Discontinuous spectral element with multi-

resolution and separated representations for fast
computation with guaranteed precision in many
dimensions.

Computational kernels

• Discontinuous spectral element
– In each “box” a tensor product of coefficients
– Most operations are small matrix-multiplication

– Typical matrix dimensions are 2 to 30
– E.g., (20,400)T * (20,20)

r i ' j ' k '=∑
i j k

s i j k c i i ' c j j ' ck k '=∑
k ∑j ∑i s i j k ci i ' c j j ' ck k '

⇒ r= sT cT c T c

07/29/09 Robert J. Harrison, UT/ORNL 40

Ratio of Speeds of MKL, Goto, ATLAS
to MTXMQ on Intel Xeon 5355

for (20,400)T*(20,n).

n MKL Goto ATLAS n MKL Goto ATLAS

2 6.25 4.1667 5 16 0.8966 1.2581 2.0708

4 3.1042 3.6341 4.6563 18 1.7763 1.3636 2.4545

6 4.375 2.625 5.122 20 0.9556 1.2727 2.6168

8 1.3132 2.0427 5.1957 22 1.6416 1.2968 2.7308

10 2.7368 1.9549 5.3061 24 0.9638 1.2208 1.9664

12 1.0605 1.5843 2.4352 26 1.5337 1.2814 2.1295

14 2.0323 1.4737 2.1356 28 0.8411 1.0588 2.0301

07/29/09 Robert J. Harrison, UT/ORNL 41

XT5 single core FLOPs/cycle

(nj, ni)T*(nj,nk)

ni nj nk MTXMQ ACML

400 2 20 2.55 0.95

400 4 20 2.62 1.50

400 6 20 2.60 1.79

400 8 20 2.56 2.02

400 10 20 2.58 2.12

400 12 20 2.64 2.27

400 14 20 2.90 2.35

400 16 20 2.80 2.46

400 18 20 2.74 2.49

400 20 20 2.89 2.58

nested transform (nj, ni)T*(nj,nk)

ni nj nk MTXMQ ACML

4 2 2 0.10 0.07

16 4 4 1.04 0.51

36 6 6 1.74 0.99

64 8 8 2.33 1.56

100 10 10 2.61 1.80

144 12 12 2.69 2.12

196 14 14 2.94 2.17

256 16 16 2.97 2.41

324 18 18 2.93 2.38

400 20 20 3.03 2.49

484 22 22 3.01 2.52

576 24 24 3.09 2.73

676 26 26 3.02 2.73

784 28 28 2.87 2.87

900 30 30 2.88 2.81L2 cache is 512Kb = 2*32^3 doubles
- hence expect good multi-core scaling
- measured linear speed up all 8 cores

07/29/09 Robert J. Harrison, UT/ORNL 42

Initial results C1060 Single MP
 MTxM [k,k2]Tx[k,k]

0 8 16 24 32
0.00

0.50

1.00

1.50

2.00

2.50

GFLOP/s

k

d.p.
GFLOP/s

07/29/09 Robert J. Harrison, UT/ORNL 43

Combine multiple small kernels
• Task queue implemented on Tesla

– Each task targets 1 MP (1 multi-threaded block)
– In principle C++ templates should work, but ??
– Overlap data transfer with compute
– Looking forward to next gen. card rumored to

have more MIMD capabilities

• E.g., model kernel of
convolution operator
– 60 GF/s double precision ([32,1024]*[32,32]))
– But this is neglecting many optimizations ...

currently projecting perhaps 40 GF/s

r=∑

 sT X
T
Y

T

Z

07/29/09 Robert J. Harrison, UT/ORNL 44

Applications under development
• DFT & HF for electrons

– Energies, gradients, spectra, non-linear optical
properties, Raman intensities (Harrison, Sekino, Yanai
Vasquez)

– Molecules & periodic systems (Eguilez and Thornton)

• Atomic and molecular physics
– Exact dynamics of few electron systems in strong

fields (Krstic and Vence), MCSCF for larger systems

• Nuclear structure
– G. Fann, et al.

• Preliminary studies in fusion and climate

07/29/09 Robert J. Harrison, UT/ORNL 45

Dynamics of
H

2

+ in laser

- 3D
- fixed nuclei

F*sin(w*t)

Image shows electron
density evolving in
collinear field but
multiple angles
have been simulated

log10 scale, [-30,30]^3

07/29/09 Robert J. Harrison, UT/ORNL 46

Dynamics of H
2

+ in laser
• 4D – 3 electronic + internuclear coordinate

– First simulation with quantum nuclei and
non-collinear field (field below is transverse)
E

le
ct

ro
ni

c
di

po
le

 a
.u

.

Time a.u.

R a.u.

-2.017

-2.032

Field

07/29/09 Robert J. Harrison, UT/ORNL 47

High-level composition
• Close to the physics

operatorT op = CoulombOperator(k, rlo, thresh);

functionT rho = psi*psi;

double twoe = inner(apply(op,rho),rho);

double pe = 2.0*inner(Vnuc*psi,psi);

double ke = 0.0;

for (int axis=0; axis<3; axis++) {

 functionT dpsi = diff(psi,axis);

 ke += inner(dpsi,dpsi);

}

double energy = ke + pe + twoe;

E=〈∣−
1
2
∇

2
V∣〉∫

2
x

1
∣x− y∣

2
 y dx dy

07/29/09 Robert J. Harrison, UT/ORNL 48

High-level composition

• Express ALLALL available parallelism without
burdening programmer
– Internally, MADNESS is looking after data and

placement and scheduling of operations on
individual functions

– Programmer must express parallelism over
multiple functions and operators

• But is not responsible for scheduling or placement

07/29/09 Robert J. Harrison, UT/ORNL 49

High-level composition
• E.g., make the matrix of KE operator

– All scalar operations include optional fence
• E.g., functionT scale(const functionT& f, T scale, bool fence=true)

– Internally, operations on vectors schedule all
tasks with only one fence

Tensor<double>
kinetic_energy_matrix(World& world,
 const vector<functionT>& v) {
 int n = v.size();
 Tensor<double> r(n,n);
 for (int axis=0; axis<3; axis++) {
 vector<functionT> dv = diff(world,v,axis);
 r += inner(world, dv, dv);
 }
 return r.scale(0.5);
}

〈i∣−
1
2
∇

2
∣ j 〉

= 1
2
〈∇

T
i∇ j〉

07/29/09 Robert J. Harrison, UT/ORNL 50

MADNESS parallel runtime

MPI Global Arrays ARMCI GPC/GASNET

MADNESS math and numerics

MADNESS applications – chemistry, physics, nuclear, ...

MADNESS architecture

Intel Thread Building Blocks being considered for multicore

07/29/09 Robert J. Harrison, UT/ORNL 51

Runtime Objectives
● Scalability to 1+M processors ASAP
● Runtime responsible for

● scheduling and placement,
● managing data dependencies,
● hiding latency, and
● Medium to coarse grain concurrency

● Compatible with existing models
● MPI, Global Arrays

● Borrow successful concepts from
Cilk, Charm++, Python

● Anticipating next gen. languages

07/29/09 Robert J. Harrison, UT/ORNL 52

Multi-threaded architecture

RMI Server
(MPI or portals)

Incoming active
messages

Task dequeue

Incoming active
messages

Application
logical main

thread

Outgoing active messages

Work stealing

Task attributes indicate #threads, if it
can run on host, accelerator, or either
... full dynamic load balance

Key elements
● Futures for hiding latency and
automating dependency management

● Global names and name spaces

● Non-process centric computing
● One-sided messaging between objects
● Retain place=process for MPI/GA legacy

● Dynamic load balancing
● Data redistribution, work stealing, randomization

Futures
● Result of an

asynchronous
computation
– Cilk, Java, HPCLs

● Hide latency due
to communication
or computation

● Management of
dependencies
– Via callbacks

int f(int arg);
ProcessId me, p;

Future<int> r0=task(p, f, 0);
Future<int> r1=task(me, f, r0);

// Work until need result

cout << r0 << r1 << endl;

Process “me” spawns a new task in process “p”
to execute f(0) with the result eventually returned
as the value of future r0. This is used as the argument
of a second task whose execution is deferred until
its argument is assigned. Tasks and futures can
register multiple local or remote callbacks to
express complex and dynamic dependencies.

Global Name Spaces
● Specialize global names to

containers
– Hash table done
– Arrays, etc., planned

● Replace global pointer
(process+local pointer)
with more powerful
concept

●

● User definable map from
keys to “owner” process

class Index; // Hashable
class Value {

double f(int);
};

WorldContainer<Index,Value> c;
Index i,j; Value v;
c.insert(i,v);
Future<double> r =

c.task(j,&Value::f,666);

Name spaces are a large part of the elegance of Python and success of Charm++ (chares+arrays).

A container is created mapping indices
to values.

A value is inserted into the container.

A task is spawned in the process owning
key j to invoke c[j].f(666).

Virtualization of data and tasks
Parameter:
 MPI rank
 probe()
 set()
 get()

Future Compress(tree):
Future left = Compress(tree.left)
Future right = Compress(tree.right)
return Task(Op, left, right)

Compress(tree)
Wait for all tasks to complete

Task:
 Input parameters
 Output parameters
 probe()
 run()

Benefits: Communication latency & transfer time largely hidden
 Much simpler composition than explicit message passing
 Positions code to use “intelligent” runtimes with work stealing
 Positions code for efficient use of multi-core chips
 Positions code for efficient use of hybrid architectures

07/29/09 Robert J. Harrison, UT/ORNL 57

Summary
• Huge computational resources are rushing

towards us
– Tremendous scientific potential
– Tremendous challenges in

• Research,
• Education, and
• Community

• UT and ORNL
– Think of us when you have/want something fun

and challenging to do – or if you have some
good students looking for challenging graduate
or postdoctoral study

07/29/09 Robert J. Harrison, UT/ORNL 58

Acknowledgements
• Our work on accelerators is supported by the National

Science Foundation, grant CHE 0625598

– Cyber-infrastructure and Research Facilities: Chemical
Computations on Future High-end Computers

• Work on MADNESS and NWChem is supported by the U.S.
Department of Energy, the divisions of Advanced Scientific
Computing Research and Basic Energy Science, Office of
Science, under contract DE-AC05-00OR22725 with Oak
Ridge National Laboratory

• This research was performed in part using resources of the
National Center for Computational Sciences at Oak Ridge
National Laboratory under contract DE-AC05-00OR22725

• Greg Peterson @ UT EECS and his talented students
Akila Gothandaraman and Rick Weber

