

Reconfigurable Computing For Cholesky Decomposition

Depeng Yang, Gregory D. Peterson, and Husheng Li

Outline

- Background and motivation
- Cholesky decomposition procedure
- Architecture and performance
- Customized precision and error analysis
- Conclusions

Background

- Cholesky decomposition is a computationally expensive step in solving least square problems in signal processing.
- In compressed sensing it desires to speed up signal reconstruction algorithms, in which Cholesky decomposition is the key step.
- FPGAs provide an approach to speeding up computations.

Cholesky Decomposition

 Standard Cholesky decomposition is associated with square root and division operation. The heavy data dependency makes it very hard to obtain a speedup.

$$L L^T = A$$

```
for i = 1 to N do
  begin
    l(i, i) = SQRT(a(i) i));
  for j = i+1 to N do
    begin
     l(j, i) = a(j i)/l(i, i);
    for k = i+1 to j do a(j, k) = a(j, k) - a(j,i)*a(k, i);
  end
end
```


Solving Linear Equations

How to solve Ax=b, if $A^T=A$?

Solution:
$$Ax=b \Rightarrow LL^T=b \Rightarrow Lr=b \Rightarrow Dependency!!!$$

Heavy Data

How to solve $L^Tx=r$ on FPGAs? Can we aclive a speedup using FPGAs?

$$\begin{pmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{pmatrix} \quad \begin{aligned} x_2 &= (r_3 - u_{34}x_4)/u_{33} \\ x_2 &= (r_2 - u_{24}x_4 - u_{23}x_3)/u_{22} \\ x_1 &= (r_1 - u_{14}x_4 - u_{13}x_3 - u_{12}x_2)/u_{11} \end{aligned}$$

Speedup Forward/Backward Substitutions

LDL Cholesky decomposition:

$$A=LDL^{T}$$
 (D: diagonal matrix)

$$-> Ax=b \Rightarrow LDL^Tx=b \Rightarrow LDr=b \Rightarrow L^Tx=r$$

 By separating the divider, a speedup is achieved for forward/backward substitutions.

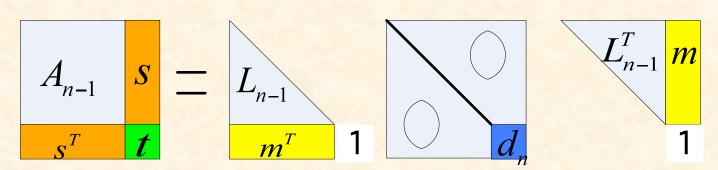
$$\begin{bmatrix}
1 & u_{12} & u_{13} & u_{14} \\
0 & 1 & u_{23} & u_{24} \\
0 & 0 & 1 & u_{34} \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{pmatrix} = \begin{pmatrix}
r_1 \\
r_2 \\
r_3 \\
r_4
\end{pmatrix}$$

$$\begin{aligned}
x_4 &= r_4 \\
x_3 &= (r_3 - u_{34}x_4) \\
x_2 &= (r_2 - u_{24}x_4 - u_{23}x_3) \\
x_1 &= (r_1 - u_{14}x_4 - u_{13}x_3 - u_{12}x_2)
\end{aligned}$$

Novel Cholesky Decomposition

• The original matrix A_n is partitioned into a 2x2 block matrix which consists of the matrix A_{n-1} , a column vector s and a scalar number t, whose Cholesky decomposition is given by:

$$A_{n} = \begin{pmatrix} A_{n-1} & s \\ s^{T} & t \end{pmatrix} = \begin{pmatrix} L_{n-1} & 0 \\ m^{T} & 1 \end{pmatrix} \begin{pmatrix} D_{n-1} & 0 \\ 0 & d_{n} \end{pmatrix} \begin{pmatrix} L_{n-1}^{T} & m \\ 0 & 1 \end{pmatrix}$$



Novel Cholesky Decomposition

Assuming the decomposition of matrix A_{n-1} is known, giving:

$$A_{n-1} = L_{n-1}D_{n-1}L_{n-1}^{T}$$

 Then for factorizing A_n we just need to update the lower triangular matrix by solving lower triangular equations to obtain vector m and scale g:

$$L_{n-1}D_{n-1}m = s$$

$$d_{n} = t - s^{T} D_{n-1} s = t - \sum_{i=1}^{n-1} s_{i}^{2} d_{i}$$

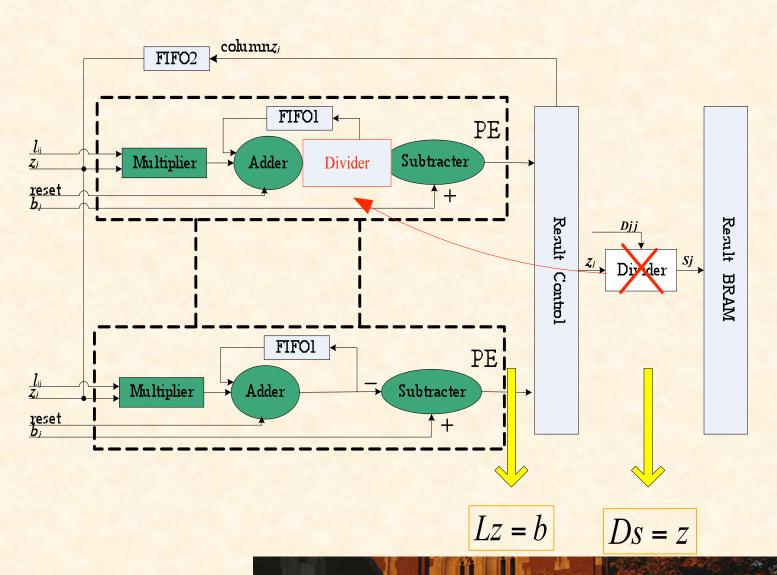
• In sequence, starting with A_1 (the most up left element in A_n) the matrix A_n decomposition is calculated by iteratively solving triangular linear equations.

Computation Sequence for Pipeline

• A pipeline is designed for solving lower triangular equations LDs=b; (=>Lz=b; Ds=z;) and computation sequence is illustrated in the table:

Step 1	Step 2	•••	Step n-1
$(z_1=b_1)$	~3- U3-13/2-23	•	
$ z_2 = b_1 - l_2 z_1 \\ z_3 - l_2 z_1 $		•	
$z_3 - l_2 z_1$	$z_n = -l_n z_2 - z_n$	•	
$z_4 = \ell_4 z_1$	n ni z n		
$z_n = \ell_n z_1$			Ds = z
$\varepsilon_1 = z_1/d_1$	$s_2 = z_2 / d_2$	•	$s_n = z_n / d_n$
Feed back z ₂	Feed back z_3	•	

Architecture of PEs



Performance

- Testing matrix size is 256x256 and we use 16 PEs.
- Xilinx XC5VSX95T-2 FPGA (containing 14720 slices and 640 DSP48 modules).
- C code running on the CPU with a Quad core 3GHz Intel Xeon X5450, 6144KB cache and 2GB memory.

Design	s20e8	s23e8 (single)	s32e11	s46e11	s52e11 (double)	
Freq	265MHz	255	220	206	175	
Slices	19%	24%	34%	62%	73%	
DSP48	7%	22%	24%	35%	47%	
CPU	140.4875 <i>u</i> s			145.9826us		
Interface	200MHz			100MHz		
FPGA	10.96 us			21.76 us		
speedup	~13			~7		

Customized Precision

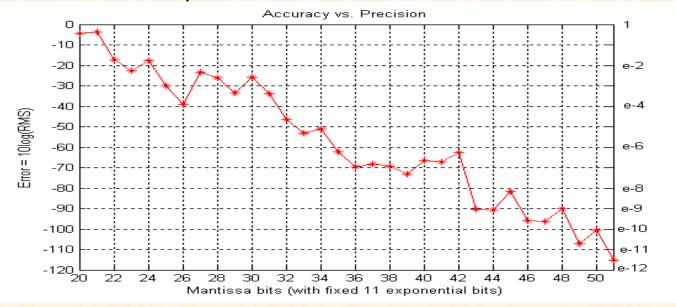
- The precision of the PEs is customized by adjusting mantissa bits with fixed exponential bits.
- Taking double precision (s52e11: 52bits mantissa and 11bits exponential) as a reference, the error of the result L and D matrices is defined as:

Error =
$$10 \log \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} (\tilde{L}_{ij} - L_{ij})^2 / N + \sum_{i=1}^{N} (\tilde{D}_i - D_i)^2 / N}$$

 1000 matrices for Cholesky decomposition with randomly distributed elements are tested and results are averaged.

Customized Precision and Error

- The error is exponentially decreased while increasing mantissa bits, even though error is affected by the condition number of the original matrix.
- Tradeoffs: Lower precision leads to fewer hardware resource and potentially higher performance, but results into lower accurate matrices; and vice versa.



Conclusions

- We adopt LDL decomposition to avoid division operations and corresponding long latency.
- We propose to use a novel Cholesky decomposition procedure in which by designing a single hardware triangular linear equation solver, the Cholesky decomposition is realized.
- Different precisions vs. error is analyzed.
- A good speedup has achieved on FPGAs compared with CPUs.
- Future work is to compare GPGPU performance with FPGAs.

Thanks!