
1

A Generic Approach for Developing Highly
Scalable Particle-Mesh Codes for GPUs

W. Hönig, F. Schmitt, R. Widera, H. Burau, G. Juckeland, M. S. Müller, and M. Bussmann

I. INTRODUCTION

We present a general framework for GPU-based low-latency
data transfer schemes that can be used for a variety of
particle-mesh algorithms [8]. This framework allows to hide
the latency of the data transfer between GPU-accelerated
computing nodes by interleaving it with the kernel execution
on the GPU. We discuss as an example the fully relativistic
particle-in-cell (PiC) code PIConGPU [5] currently used to
simulate particle acceleration by extremely short high-energy
laser pulses. The PiC algorithm is a versatile algorithm used
frequently in plasma physics—especially for large-scale sim-
ulations of fusion plasmas [13]—, in astrophysics [7], [9],
or for the simulation of particle accelerators [11]. A special
Cell processor version is used as a benchmark code for the
Roadrunner system at Los Alamos National Lab [4].

In general, particle-in-cell codes show very good weak
scaling in both mesh size and particle number and thus are
good candidates for massively-parallel computing approaches
[10]. However, when considering vector parallelization as used
for example by GPU accelerators one has to take into account
that particles can cross the boundaries between mesh domains.
Such particle crossings may cause non-local memory access
every time mesh-related data such as fields and currents and
particle data such as velocities and positions are accessed by
the same kernel [7]. Random and non-local memory access
can seriously degrade the overall performance on modern
accelerator hardware [3], [12]. Thus, performant implementa-
tions of the PiC-algorithm with vector parallel memory access
accelerator hardware have been sparse [1], [12]. The need for
large-scale simulations of plasmas calls for a general approach
towards vector-parallel PiC implementations.

The presented hybrid GPU-CPU data transfer and access
framework is grid-based and can, furthermore, be used for
general particle-mesh schemes. GPU memory access to parti-
cle data and regular grid data are efficiently separated, while
data that has to be exchanged between domains located on
different GPUs is transferred during computing steps using
GPU-CPU memory transfers and MPI. A simulation of laser-
wakefield acceleration of electrons in an underdense plasma
serves as a real-world benchmark for the performance of the
framework.

H. Burau and M. Bussmann are with the Forschungszentrum Dresden-
Rossendorf e.V., D-01328 Dresden, Germany.

W. Hönig, F. Schmitt, R. Widera, G. Juckeland, and M. Müller are with
Technical University Dresden, Center for Information Services and High
Performance Computing (ZIH), D-01062 Dresden, Germany.

.

.

.

Attribute III

.

.

.

Cell
.
.
.

Attribute II

.

.

.

Tile 
Management

Attribute II

Attribute III

Attribute I

Attribute I

Supercell

Particle

Grid

Attribute Tile Pool

Logical view Implementation

Last Tile

First Tile

Fig. 1. Schema for tiling particles: A regular grid is divided into supercells,
which contain a fixed number of cells. Each cell can hold an arbitrary number
of particles. The attributes (e.g. velocity) are stored separately in an attribute
tile pool where each attribute is stored in fixed-size vectors (at the same
index as the particle in the particle array). Tiles consist of an 1D-array and
two pointers which form a double-linked-list. The mapping between a particle
and its cell is handled via special attributes in the tile management.

II. SINGLE GPU OPTIMIZATIONS

A. Memory Model - Tiling Particles

For Particle-Mesh algorithms a mapping from cells to parti-
cles and vice versa is necessary. Our first basic solution was a
particle list where each particle element holds a pointer to its
owning cell and its successor [5]. Usually a PiC algorithm will
run for a large number of iterations which leads to movement
of many particles. This results in heavy fragmentation of the
particle list which turns fast regular memory access patterns
into slow random memory accesses and, thereby, to continu-
ously increasing time needed for one iteration of the algorithm
(figure 2).

The solution to this fragmentation problem is the introduc-
tion of a new data structure which uses a three stage memory
hierarchy as shown in figure 1. This approach uses coalesced
global memory accesses for all particle and cell data except tile
domain border regions. Therefore, the global fragmentation
does not affect the performance and we have no limit in the
amount of particles per cell. Problem specific data has to be
copied only if a particle moves to a neighboring supercell.
Otherwise, only the cell index has to be adjusted.

The introduction of this data structure reduced the time
needed for one iteration as well as the slowdown over time as
shown in figure 2.

B. Comparing CUDA and OpenCL

Code written in OpenCL (Open Computing Language) is
intended to work on multiple platforms with recompilation



2

0 20 40 60 80 100

50

100

150

percent of total runtime

m
s/

ite
ra

tio
n

Performance impact of old vs. new particle model

S1070 (linked list)
C2050 (linked list)

S1070 (tiles)
C2050 (tiles)

Fig. 2. Performance comparison of old (linked list) [5] and new (tiles)
memory models on Tesla S1070 and C2050 (Fermi) GPUs. The Simulation
uses one GPU, a 1024×2048 grid, about 30 mill. particles, 40,000 iterations.
The memory-fragmentation and resulting performance drop can be reduced to
almost no influence using the new particle tiling data structure and the latest
NVIDIA hardware.

being the only necessity. Since OpenCL supports GPGPU as
well, former CUDA applications can be extended to varying
platforms and heterogeneous systems.

By our experience, OpenCL follows most of CUDA’s design
principles so that problems which emerged in the migration
process rarely resulted from different language and API capa-
bilities but from immature driver implementations. Examples
are the tested Cell/B.E. driver by IBM which was still in early
alpha stage as well as the AMD/ATI OpenCL driver. With the
latter, we were unable to compute large problems on the ATI
HD5770 as it could not access the full available memory.

For performance comparison we extended results from [6]
by running several synthetic benchmarks which showed that
current OpenCL implementations on GPU architectures give
similar results to CUDA but cannot compete with the latter
if highly optimized codes are used. Testing matrix multipli-
cations, CUDA and OpenCL on the Tesla S1070 produced
identical results when only global memory was accessed while
CUDA surpassed OpenCL by factor 8 for an optimized version
which utilized shared memory. We extend previous work on
this topic by comparing two implementations of the described
PIConGPU code on various NVIDIA and ATI graphic cards
(figure 3).

After evaluating tests on GPU and CPU systems, we can
conclude that though codes are portable in terms of correctness
between platforms, optimization strategies are not as long as
the underlying hardware architecture does not suite them.

III. MULTI GPU OPTIMIZATIONS

A. Domain Decomposition and Boundary Exchange

Domain decomposition is a widely usable technique for
particle-mesh computation [8]. The domain that is to be ex-
plored is partitioned into small parts called cells which contain
particles (e.g. electrons). These can move between cells in each
iteration and, thus, have to be exchanged between the cells’
data structures as well. Our code works on multiple GPUs so
that particle exchanges between different GPUs and hosts are

0 2 4 6 8 10 12

ms/iteration (avg.)

Performance of CUDA and OpenCL versions of PIConGPU

C2050/CUDA S1070/CUDA
C2050/OpenCL S1070/OpenCL

HD5770/OpenCL

Fig. 3. Average iteration times for different GPU platforms using one GPU.
The simulation uses a 512 × 512 grid and about 700,000 particles. The
OpenCL version of the code produces similar results compared to CUDA
on NVIDIA platforms, while the same code takes about three times as long
on and AMD/ATI GPU.

required. The usage of MPI enables the reuse of previously
established communication techniques between hosts [2]. In
this special problem domain there are several appropriate
performance optimizations to achieve a higher throughput and
lower latency. The basic idea is to start each communication as
soon as possible. Because all GPUs do not inevitably compute
at the same speed, sending and receiving of data should be
separated. The developed C++ library uses different buffers
for all boundaries for sending and receiving and is capable of
supporting 3D communication. The communication is done in
the background using an event based programming mechanism
as described in the next section.

B. Computation Communication Overlap

The main problem of parallel applications is that even
the smallest communication/computation imbalance will ul-
timately limit the scalability of the program. Our presented
solution communicates and computes in parallel exploiting
the fact that one iteration of the code has various steps
that also compute on different data. We start by computing
the first step (electrical field for PIConGPU) including the
border regions. While the second step, the magnetic field, is
processed without the borders, we simultaneously transfer the
previously calculated borders for the electrical field. After that,
the remaining magnetic field can be computed. The presented
libGPUGrid library has an easy to use interface to accomplish
this: Instantiate GridBuffer and use startSend() or
startReceive() to exchange its borders. All internals
(especially MPI) are hidden. The two functions return an
EventTask that can be used to test or wait for the com-
munication to finish. A schematic timeline visualization (Fig.
4) illustrates this overlap.

C. Decoupling MPI and CUDA

All MPI and low level CUDA details (i.e. memory man-
agement) are hidden in the presented grid library. The CUDA
kernels (user code) need not to know that several GPUs
are involved. The user must only specify possible transfer
directions by defining a communication mask and can start all
needed communication with one function call. Internally em-
ploying several design patterns like Observer, Strategy



3

updateE

Thread [0]
(Host+GPU)

updateB<CORE>

time

Thread [1]
(Host+GPU)

updateE

updateB<CORE>

updateB<BORDER>updateB<BORDER>

updateParticles updateParticles

send fieldE

send fieldB

updateCurrent<CORE> updateCurrent<CORE>

send particles

updateCurrent<BORDER> updateCurrent<BORDER>

Communication (MPI)

addCurrent<CORE> addCurrent<CORE>

send current

addCurrent<BORDER> addCurrent<BORDER>

Fig. 4. The schematic program execution timeline of one iteration of the
PIConGPU code shows how the communication/memory transfer (bold lines)
of all data structures is interleaved with the corresponding computation steps
to hide the transfer latency.

and Adapter allows the replacement of MPI with another
inter-node communication paradigm but also OpenCL instead
of CUDA for acceleration (see also Section II-B).

D. Performance
The performance was analyzed using up to 16 GPUs (4

Tesla S1070 boards with 4 GPUs each). Figure 5 shows our
results for strong (i.e. fixed total problem size) and weak (i.e.
fixed problem size per GPU) scaling.

1 2 4 8 16

0.13

0.25

0.5

1

2

4

number of GPUs

ru
nt

im
e

(n
or

m
al

iz
ed

)

Strong and weak scalability of PIConGPU

weak scaling
strong scaling

Fig. 5. Calculation time for PIConGPU with [5] memory model: strong
(2048× 2048 grid, about 28 mill. particles) and weak scaling (2048× 2048
grid, about 7.5 mill. particle per GPU) both over 20000 iterations. Using 16
GPUs, a parallel speedup of 6.7 is reached for strong scaling.

IV. SUMMARY AND OUTLOOK

We presented the internals of a general framework for
using clusters of GPU nodes for particle-mesh algorithms.

The capabilities of this framework include abstraction of all
communication (between hosts and between host and acceler-
ator devices), the possibility to easily interleave computation
and communication, as well as a GPU oriented memory
management for particle data. One particular implementation
using this framework—PIConGPU—proves the efficiency of
the approach by providing to our knowledge the lowest time to
compute an iteration compared to other (accelerated) Particle-
in-Cell codes. Additionally, we presented experience in porting
our PiC code to heterogeneous systems using OpenCL.

Further work on the framework includes a library to abstract
particle handling as well.

REFERENCES

[1] Paulo Abreu, Ricardo Fonseca, Joao Pereira, and Luis Silva. PIC
codes in new processors: a full relativistic PIC code in CUDA enabled
hardware with direct visualization. In 21st International Conference on
Numerical Simulation of Plasmas, page submitted. IEEE Press, 2009.

[2] K. J. Bowers, B. J. Albright, B. Bergen, L. Yin, K. J. Barker, and
D. J. Kerbyson. 0.374 Pflop/s trillion-particle kinetic modeling of laser
plasma interaction on Roadrunner. In SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 1–11, Piscataway, NJ,
USA, 2008. IEEE Press.

[3] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan.
Ultrahigh performance three-dimensional electromagnetic relativistic ki-
netic plasma simulation. Physics of Plasmas, 15(5):055703–1–055703–
7, March 2008.

[4] K. J. Bowers, B. J. Albright, L. Yin, W. Daughton, V. Roytershteyn,
B. Bergen, and T. J. T. Kwan. Advances in petascale kinetic plasma
simulation with VPIC and Roadrunner. Journal of Physics: Conference
Series, 180:012055+, 2009.

[5] Heiko Burau, René Widera, Wolfgang Hönig, Guido Juckeland, Alexan-
der Debus, Thomas Kluge, Ulrich Schramm, Tomas E. Cowan, Roland
Sauerbrey, and Michael Bussmann. PIConGPU – A fully relativistic
particle-in-cell code for a GPU cluster. Special Issue of the IEEE
Transactions on Plasma Science on Numerical Simulation of Plasma,
2010. accepted for publication.

[6] A. Danalis, G. Marin, C. McCurdy, J. Meredith, P. Roth, K. Spafford,
V. Tipparaju, and J. Vetter. The Scalable HeterOgeneous Computing
(SHOC) Benchmark Suite. Proceedings of the Third Workshop on
General-Purpose Computation on Graphics Processors (GPGPU 2010),
2010.

[7] R. A. Fonseca, S. F. Martins, L. O. Silva, J. W. Tonge, F. S. Tsung,
and W. B. Mori. One-to-one direct modeling of experiments and astro-
physical scenarios: pushing the envelope on kinetic plasma simulations.
Plasma Physics and Controlled Fusion, 50(12):124034+, December
2008.

[8] R. W. Hockney and J. W. Eastwood. Computer Simulation Using
Particles. Taylor & Francis, January 1989.

[9] Peter Messmer. Par-T: A Parallel Relativistic Fully 3D Electromagnetic
Particle-in-Cell Code. In Tor Sørevik, Fredrik Manne, Assefaw H.
Gebremedhin, and Randi Moe, editors, Applied Parallel Computing. New
Paradigms for HPC in Industry and Academia, volume 1947 of Lecture
Notes in Computer Science, chapter 41, pages 350–355. Springer Berlin
Heidelberg, Berlin, Heidelberg, April 2001.

[10] K. Paul, D. L. Bruhwiler, B. Cowan, J. R. Cary, C. Huang, F. S. Tsung,
W. B. Mori, E. Cormier-Michel, C. G. R. Geddes, E. Esarey, S. Martins,
R. A. Fonseca, and L. O. Silva. Benchmarking the codes VORPAL,
OSIRIS and QuickPIC with Laser Wakefield Acceleration Simulations.
In Advanced. Accel. Concepts Workshop, volume LBNL-2293E, pages
315–320, 2008.

[11] David B. Serafini, Peter Mccorquodale, and Phillip Colella. Advanced
3D Poisson solvers and particle-in-cell methods for accelerator model-
ing. Journal of Physics: Conference Series, 16(1):481+, January 2005.

[12] George Stantchev, William Dorland, and Nail Gumerov. Fast parallel
Particle-To-Grid interpolation for plasma PIC simulations on the GPU.
J. Parallel Distrib. Comput., 68(10):1339–1349, October 2008.

[13] J. L. Vay, P. Colella, P. Mccorquodale, Van, A. Friedman, and D. P.
Grote. Mesh refinement for particle-in-cell plasma simulations: Appli-
cations to and benefits for heavy ion fusion. Laser and Particle Beams,
20(04):569–575, 2002.


