
1

Accelerating Quantum Chromodynamics Calculations with GPUs

Guochun Shi
†
, Steven Gottlieb

†‡
, Aaron Torok

‡
, Volodymyr Kindratenko

†

†
National Center for Supercomputing Applications, University of Illinois, Urbana, IL, USA

‡
Department of Physics, Indiana University, Bloomington, IN, USA

gshi@ncsa.illinois.edu, gs@indiana.edu, amtorok@indiana.edu, kindr@ncsa.illinois.edu

Abstract—We present a CUDA C implementation of the

Conjugate Gradient (CG) and multi-mass CG solver from the

MILC quantum chromodynamics package to speedup

improved staggered quarks computations on NVIDIA GPUs.

The implementation is built on the QUDA package from

Boston University.

Keywords- quantum chromodynamics; MILC; GPU

I. INTRODUCTION

The MIMD Lattice Computation (MILC) [1] code, a
Quantum Chromodynamics (QCD) application used to
simulate four-dimensional SU(3) lattice gauge theory, is one
of the largest compute cycle users at many supercomputing
centers. Previously, we have investigated how one of
MILC’s applications can be accelerated on the Cell
Broadband Engine [3]. In this work, we discuss how this
code can take advantage of newly emerging Graphics
Processing Units (GPUs).

There are four main parts of the application that are
responsible for over 98% of the execution time: Conjugate
Gradient (CG) solver (over 58%), Fermion force (FF) (over
22%), Gauge force (GF) (about 10%), and “fat links” (about
9%). All these kernels achieve between 1 and 3.5 GFLOPS
per CPU core on a CPU system [2]. In this short paper, we
describe how the CG solver is re-implemented to work on
GPUs. Our starting point for this work was the Boston
University (BU) implementation of the Wilson-Dirac sparse
matrix-vector product and CG solver [6]. We have extended
the BU GPU code to include the case of improved staggered
quarks, or staggered Dslash operator, used in MILC.

II. CONJUGATE GRADIENT SOLVER

A. Staggered Dslash kernel

Lattice QCD solves the space-time 4-D linear system
 where and are complex variables carrying

a color index and a four-dimensional lattice
coordinate . The matrix is given by
where is the identity matrix, is constant, and the
matrix (called “Dslash”) is given by

 ∑ (

 ̂ ̂

 ̂)

∑ (

 ̂ ̂

 ̂)

 

where and incorporate the staggered phase factors.

Improved staggered quarks such as asqtad and HISQ
require both first and third nearest neighbor terms in the
Dirac operator. We call the corresponding links fat links and
long links. In the Dslash operation, all links are read-only
and only spinors are updated. There are 4 fat links and four
long links for each site, one in each directions. The
opposite link for a site is defined as conjugate transpose of
the positive link in its negative neighbor in the same
direction. In order to update each site, we need to read the
spinors and the positive or negative links in all the positive
and negative directions.

Each site contains one spinor, 4 fat links and 4 long links.
Each spinor is a three-element complex vector, requiring 6
floats for single-precision implementation. Each link, fat
link or long link, is a 3x3 complex matrix, thus requiring 18
floats of storage for single-precision implementation. It is
well know that a 3x3 unitary matrix is completely
determined by the elements of its first two rows (12 real
elements). In fact, it actually determined by only 8 real
numbers [7]. The BU QUDA library defines corresponding
compression techniques called 12-reconstruct and 8-
reconstruct, respectively. We can use these techniques for
the long links (even when staggered phases are included), but
not for the fat links, as they are not unitary. Finally the even
and odd quantities are stored in the first and second half of a
memory region to take advantage of the fact that when even
spinors are updated, all its first neighbors and third neighbors
are on odd sites and vice versa. The data layout in memory
used in MILC is shown in Figure 1.

Figure 1. Data layout in host memory for spinor (top) and fat link

(bottom).

fat link … … +X

… … +Y

… … +Z

… … +T

Each link contains 18 floats (3x3x2)

spinor

even site starts odd site starts

… …
6V floats

Each spinor contains 6 (3x2) floats

2

When implementing the Dslash operation on the GPU, it
is important to note that the computation/byte ratio is close to
one for single precision. This indicates that the performance
of the GPU implementation will be limited by the GPU
memory bandwidth. Therefore, it is critical to ensure full
memory bandwidth utilization, which ultimately requires
coalesced access to the device memory. In long link 12/8
reconstruction, the bandwidth requirement is reduced by
performing more computation. This is desirable in single and
half precision while counter-productive in double precision,
as we will show later. We achieve the coalesced access by
aligning data in GPU device memory as follows.

For spinors, which are represented by six 32-bit floating
point numbers, we use three float2 values. The three float2
values are stored in memory in a stripe of so that
when all threads are reading neighboring spinors in the same
odd/even segment, their reads can be coalesced (Figure 2).
The pad is introduced to avoid the partition camping problem
[9] and is usually one half of temporal face size
(x1*x2*x3/2). The data is read either directly from device
memory or through texture and we found that a combination
of both achieves better performance than loading everything
in either way. Specifically, when the fat link is loaded
directly and the long link and spinors are loaded through
texture the best performance is achieved.

Figure 2. Data layout in the device memory for spinors and GPU code to

access the data via texture unit.

The fat link is stored as a 3x3 complex matrix and it is
not unitary. Therefore no reconstruction can be done with it
and we have to load it completely. We store fat link as nine
float2 values. The access method is similar to the one used
for spinors except it uses nine float2 values instead of three.

The long link matrix is unitary and thus we can use data
compression in the form of 12-reconstruct or 8-reconstruct to
restore the full matrix on the fly from a subset of it. Figure 3
shows the data layout for the 12-reconstruct for the long link
matrix. The compressed matrix is stored as three float4
values in memory. Each float4 value is stored with stripe of
 to enable coalesced access. The 4

th
 and 5

th
 float4

are filled with zeros when reading the long link and will later
on be computed based on the first three float4 values.

In the Dslash operation, links are not shared and thus
opportunities for data reuse are not available. Each spinor,

on the other hand, is used 16 times. However, since the
spinors are small compared to links, the benefit of reusing
them across multiple threads is not as great. Data access
requirement for a 12-reconstruct is spinors read + spinor
write + fat link read + long link read, or
 words. If we can reuse the same
spinor to the maximum, it is easy to see that data access
requirement becomes ()
 words, leading to 26.3% memory bandwidth
improvement. However, in order to make the sharing data
reuse work, we need to rearrange the data so that threads in
each thread block compute on neighboring sites in 4D space.

Figure 3. Data layout for the 12-reconstruct for the long link matrix.

Here we only describe 12-reconstruct and single-
precision (SP) computations. Implementations of the 8-
reconstruct, 18 (no) reconstruct, and double-precision (DP)
computations are similar. The half precision is implemented
as well using short2/short4 data types with a normalization
vector. More details on the mixed-precision implementations
can be found in [5].

B. CG

The CG solver is used in MILC to solve the system of
linear equations. We implemented parts of the CG subroutine
to work on the GPU. The main loop is still executed on the
CPU, but all link and spinor data reside in the device
memory until convergence to the desirable level is achieved
or the maximum number of iterations is executed. The
Dslash and other vector operations are executed on the GPU.

Mixed precision is also implemented. The bulk of the
work is done using lower precision and only when it reaches
a certain threshold, the solution is updated using higher
precision. This way, the final solution is sufficiently accurate
and overall performance is substantially improved.

C. Multi-mass Solver

Often we need to solve the same linear system for
different masses. There are algorithms developed for this
case and implemented in MILC CPU code base. The
procedure starts with solving the system for one mass and
then reusing coefficients, solutions, residues, etc., for other
masses. We have ported this procedure to the GPU as well

CPU spinor

even site starts odd site starts

… …

6V floats

CPU parity
spinor

…
6Vh floats

(Vh+pad) x sizeof(float2)

… … …GPU parity
spinor

float2

One spinor

GPU kernel code
to read spinor

… …… …
… …
… …

…

… … … …

+X links

float4(Vh+pad) x sizeof(float4)

CPU links
layout

GPU links
layout

12-construct

One link

3

with one caveat: The mixed precision approach does not
work for the multi-mass solver. For the multi-mass solver to
be mathematically correct, the residuals of the shifted system
must coincide. This constrains us to using zero initial guess
for all shifts. When using mixed precision with reliable
updates, every time a high precision update takes place, this
condition is violated. Hence the multi-shift solver no longer
converges for the shifted systems.

D. Interface to MILC

The CG and multi-mass solvers are implemented as a
stand-alone library. To interface them with MILC, we have
implemented several glue subroutines that perform data
conversion/alignment and call GPU-based subroutines. The
correctness is verified by comparing the GPU results with
the CPU results obtained by the original MILC program. The
MILC program can switch to CPU or GPU based routines by
defining different macros during the compilation.

E. Dslash and CG performance

Here we report results obtained on a GTX280 NVIDIA
GPU using a lattice size of 24×24×24×32. As shown in
Table I, with decreasing precision the performance increases.
For single precision, changing from 18-reconstruct to 12-
reconstruct then to 8-reconstruct, the bandwidth requirement
decreases hence the performance increases. However, in the
case of double precision, the peak performance for GTX280
is only 77 GFLOPS and 12 and 8-reconstruct introduced
extra computations, hence the effective performance
decreases although the bandwidth requirement decreases.

TABLE I. DSLASH OPERATION PERFORMANCE

 DP (GFLOPS) SP (GFLOPS) Half (GFLOPS)

18-reconstruct 35 85 109

12-reconstruct 32 98 119

8-reconstruct 16 104 128

TABLE II. CG SOLVER PERFORMANCE

Sp
in

o
r

Li
n

k

R
ec

o
n

-

st
ru

ct

Sp
in

o
r

sl
o

p
p

y

Li
n

k

sl
o

p
p

y

R
ec

o
n

sl
o

p
p

y

P
er

fo
r-

m
an

ce

G
FL

O
P

S

DP DP 18 DP DP 18 33

DP DP 18 SP SP 8 91

DP DP 18 half half 8 110

SP SP 8 SP SP 8 100

SP SP 8 half half 8 120

half half 8 half half 8 124

Table II shows the performance of the CG solver for
different precision and reconstruct techniques. We achieve as
high as 100 GFLOPS for single precision and 33 GFLOPS
for double precision. In mixed precision mode, we can
achieve 110 GFLOPS for double precision accuracy and 120
GFLOPS for single precision accuracy, with “sloppy”
computation in half precision. However, as we use sloppy
precision to compute, the number of iterations it takes to
converge in CG solver increases. Despite this, the overall
performance is still better due to the improved Dslash
performance with the sloppy precision. The multi-mass

solver performance is close to the CG solver performance.
Input spinors, links, and the resulting spinor solution are

moved in and out of the GPU memory through PCIe
interface. However, this data movement cost is well
amortized as it takes hundreds or even thousands of
iterations to converge.

III. CONCLUSIONS AND FUTURE WORK

Performance achieved by the CG kernel depends on the
data type used and lattice size, but at the same time it is
significantly higher than the performance per CPU core on a
conventional CPU system. For example, single-precision
floating-point implementation of the CG solver achieves 100
GFLOPS on the GPU and just under 3 GFLOPS on the 2.8
GHz Intel Xeon core, or about 33x speedup.

We already implemented the remaining three most time-
consuming kernels from MILC and we have done a
preliminary analysis of the MILC implementation with
regards to multi-GPU and multi-node parallelization
strategy. The challenge lays in the parallel CG solver
implementation. There are multiple global scatter/gather
operations in the current MILC implementation that require
data movement between GPUs on multiple compute nodes,
which is detrimental to sustaining good overall performance.
This is still a subject of further analysis and implementation.

ACKNOWLEDGMENT

This work was sponsored by the Institute for Advanced
Computing Applications and Technologies (IACAT) and
utilized the AC cluster [8] at the National Center for
Supercomputing Applications at the University of Illinois.

REFERENCES

[1] The MIMD Lattice Computation (MILC) Collaboration,

http://www.physics.utah.edu/~detar/milc/

[2] S. Gottlieb, Early User Experience—MILC (Lattice QCD),
http://denali.physics.indiana.edu/~sg/ncsa_multicore.pdf

[3] G. Shi, V. Kindratenko, S. Gottlieb, The bottom-up implementation
of one MILC lattice QCD application on the Cell blade, International

Journal of Parallel Programming, vol. 37, no. 5, pp. 488-507, 2009.

[4] D. Roeh, J. Troup, G. Shi, V. Kindratenko, Porting MILC to GPU:
Lessons learned, Workshop on using GPUs for LQCD, August 19-21

2009, Thomas Jefferson National Accelerator Facility, Newport
News, Virginia, http://www.ncsa.illinois.edu/~kindr/projects/hpca/

files/jlab_QCD_on_GPU_presentation.pdf

[5] G. Shi, GPU Implementation of CG solver for MILC, November
2009, internal presentation, http://www.ncsa.illinois.edu/~kindr/

projects/hpca/files/GPU_CG_presentation.pdf

[6] M. A. Clark, R. Babich, K. Barros, R. C. Brower, C. Rebbi, Solving

Lattice QCD systems of equations using mixed precision solvers on

GPUs, http://arxiv.org/abs/0911.3191

[7] B. Bunk, R. Sommer, An 8 parameter representation of SU(3)

matrices and its application for simulating lattice QCD, Computer

Physics Communications, vol. 40, no. 2-3, p. 229-232, 1986.

[8] V. Kindratenko, J. Enos, G. Shi, M. Showerman, G. Arnold, J. Stone,

J. Phillips, W. Hwu, GPU Clusters for High-Performance Computing,
Proc. IEEE International Conference on Cluster Computing,

Workshop on Parallel Programming on Accelerator Clusters, Dec.

2009, doi: 10.1109/CLUSTR.2009.5289128.

[9] G. Ruetsch and P. Micikevicius, Optimizing matrix transpose in

CUDA, NVIDIA Technical Report (2009).

