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Abstract—We present a CUDA C implementation of the 

Conjugate Gradient (CG) and multi-mass CG solver from the 

MILC quantum chromodynamics package to speedup 

improved staggered quarks computations on NVIDIA GPUs.  

The implementation is built on the QUDA package from 

Boston University. 
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I.  INTRODUCTION 

The MIMD Lattice Computation (MILC) [1] code, a 
Quantum Chromodynamics (QCD) application used to 
simulate four-dimensional SU(3) lattice gauge theory, is one 
of the largest compute cycle users at many supercomputing 
centers.  Previously, we have investigated how one of 
MILC’s applications can be accelerated on the Cell 
Broadband Engine [3].  In this work, we discuss how this 
code can take advantage of newly emerging Graphics 
Processing Units (GPUs). 

There are four main parts of the application that are 
responsible for over 98% of the execution time: Conjugate 
Gradient (CG) solver (over 58%), Fermion force (FF) (over 
22%), Gauge force (GF) (about 10%), and “fat links” (about 
9%).  All these kernels achieve between 1 and 3.5 GFLOPS 
per CPU core on a CPU system [2].  In this short paper, we 
describe how the CG solver is re-implemented to work on 
GPUs.  Our starting point for this work was the Boston 
University (BU) implementation of the Wilson-Dirac sparse 
matrix-vector product and CG solver [6].  We have extended 
the BU GPU code to include the case of improved staggered 
quarks, or staggered Dslash operator, used in MILC. 

II. CONJUGATE GRADIENT SOLVER 

A. Staggered Dslash kernel 

Lattice QCD solves the space-time 4-D linear system 
     where      and      are complex variables carrying 

a color index         and a four-dimensional lattice 
coordinate  . The matrix   is given by          
where   is the identity matrix,     is constant, and the 
matrix   (called “Dslash”) is given by 
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where    and    incorporate the staggered phase factors. 

Improved staggered quarks such as asqtad and HISQ 
require both first and third nearest neighbor terms in the 
Dirac operator.  We call the corresponding links fat links and 
long links.  In the Dslash operation, all links are read-only 
and only spinors are updated.  There are 4 fat links and four 
long links for each site, one in each         directions.  The 
opposite link for a site is defined as conjugate transpose of 
the positive link in its negative neighbor in the same 
direction.  In order to update each site, we need to read the 
spinors and the positive or negative links in all the positive 
and negative directions. 

Each site contains one spinor, 4 fat links and 4 long links. 
Each spinor is a three-element complex vector, requiring 6 
floats for single-precision implementation.  Each link, fat 
link or long link, is a 3x3 complex matrix, thus requiring 18 
floats of storage for single-precision implementation.  It is 
well know that a 3x3 unitary matrix is completely 
determined by the elements of its first two rows (12 real 
elements).  In fact, it actually determined by only 8 real 
numbers [7].  The BU QUDA library defines corresponding 
compression techniques called 12-reconstruct and 8-
reconstruct, respectively.  We can use these techniques for 
the long links (even when staggered phases are included), but 
not for the fat links, as they are not unitary.  Finally the even 
and odd quantities are stored in the first and second half of a 
memory region to take advantage of the fact that when even 
spinors are updated, all its first neighbors and third neighbors 
are on odd sites and vice versa. The data layout in memory 
used in MILC is shown in Figure 1. 

 
Figure 1.  Data layout in host memory for spinor (top) and fat link 

(bottom). 
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When implementing the Dslash operation on the GPU, it 
is important to note that the computation/byte ratio is close to 
one for single precision.  This indicates that the performance 
of the GPU implementation will be limited by the GPU 
memory bandwidth.  Therefore, it is critical to ensure full 
memory bandwidth utilization, which ultimately requires 
coalesced access to the device memory.  In long link 12/8 
reconstruction, the bandwidth requirement is reduced by 
performing more computation. This is desirable in single and 
half precision while counter-productive in double precision, 
as we will show later. We achieve the coalesced access by 
aligning data in GPU device memory as follows. 

For spinors, which are represented by six 32-bit floating 
point numbers, we use three float2 values. The three float2 
values are stored in memory in a stripe of        so that 
when all threads are reading neighboring spinors in the same 
odd/even segment, their reads can be coalesced (Figure 2).  
The pad is introduced to avoid the partition camping problem 
[9] and is usually one half of temporal face size 
(x1*x2*x3/2).  The data is read either directly from device 
memory or through texture and we found that a combination 
of both achieves better performance than loading everything 
in either way. Specifically, when the fat link is loaded 
directly and the long link and spinors are loaded through 
texture the best performance is achieved. 

 
Figure 2.  Data layout in the device memory for spinors and GPU code to 

access the data via texture unit. 

The fat link is stored as a 3x3 complex matrix and it is 
not unitary. Therefore no reconstruction can be done with it 
and we have to load it completely. We store fat link as nine 
float2 values. The access method is similar to the one used 
for spinors except it uses nine float2 values instead of three. 

The long link matrix is unitary and thus we can use data 
compression in the form of 12-reconstruct or 8-reconstruct to 
restore the full matrix on the fly from a subset of it. Figure 3 
shows the data layout for the 12-reconstruct for the long link 
matrix. The compressed matrix is stored as three float4 
values in memory.  Each float4 value is stored with stripe of 
       to enable coalesced access. The 4

th
 and 5

th
 float4 

are filled with zeros when reading the long link and will later 
on be computed based on the first three float4 values. 

In the Dslash operation, links are not shared and thus 
opportunities for data reuse are not available.  Each spinor, 

on the other hand, is used 16 times. However, since the 
spinors are small compared to links, the benefit of reusing 
them across multiple threads is not as great.  Data access 
requirement for a 12-reconstruct is spinors read + spinor 
write + fat link read + long link read, or         
              words.  If we can reuse the same 
spinor to the maximum, it is easy to see that data access 
requirement becomes (     )            
   words, leading to 26.3% memory bandwidth 
improvement.  However, in order to make the sharing data 
reuse work, we need to rearrange the data so that threads in 
each thread block compute on neighboring sites in 4D space. 

 
Figure 3.  Data layout for the 12-reconstruct for the long link matrix. 

Here we only describe 12-reconstruct and single-
precision (SP) computations. Implementations of the 8-
reconstruct, 18 (no) reconstruct, and double-precision (DP) 
computations are similar. The half precision is implemented 
as well using short2/short4 data types with a normalization 
vector. More details on the mixed-precision implementations 
can be found in [5]. 

B. CG 

The CG solver is used in MILC to solve the system of 
linear equations. We implemented parts of the CG subroutine 
to work on the GPU. The main loop is still executed on the 
CPU, but all link and spinor data reside in the device 
memory until convergence to the desirable level is achieved 
or the maximum number of iterations is executed. The 
Dslash and other vector operations are executed on the GPU. 

Mixed precision is also implemented. The bulk of the 
work is done using lower precision and only when it reaches 
a certain threshold, the solution is updated using higher 
precision. This way, the final solution is sufficiently accurate 
and overall performance is substantially improved. 

C. Multi-mass Solver 

Often we need to solve the same linear system for 
different masses. There are algorithms developed for this 
case and implemented in MILC CPU code base. The 
procedure starts with solving the system for one mass and 
then reusing coefficients, solutions, residues, etc., for other 
masses. We have ported this procedure to the GPU as well 
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with one caveat: The mixed precision approach does not 
work for the multi-mass solver. For the multi-mass solver to 
be mathematically correct, the residuals of the shifted system 
must coincide. This constrains us to using zero initial guess 
for all shifts. When using mixed precision with reliable 
updates, every time a high precision update takes place, this 
condition is violated.  Hence the multi-shift solver no longer 
converges for the shifted systems. 

D. Interface to MILC 

The CG and multi-mass solvers are implemented as a 
stand-alone library. To interface them with MILC, we have 
implemented several glue subroutines that perform data 
conversion/alignment and call GPU-based subroutines.  The 
correctness is verified by comparing the GPU results with 
the CPU results obtained by the original MILC program. The 
MILC program can switch to CPU or GPU based routines by 
defining different macros during the compilation. 

E. Dslash and CG performance 

Here we report results obtained on a GTX280 NVIDIA 
GPU using a lattice size of 24×24×24×32. As shown in 
Table I, with decreasing precision the performance increases. 
For single precision, changing from 18-reconstruct to 12-
reconstruct then to 8-reconstruct, the bandwidth requirement 
decreases hence the performance increases. However, in the 
case of double precision, the peak performance for GTX280 
is only 77 GFLOPS and 12 and 8-reconstruct introduced 
extra computations, hence the effective performance 
decreases although the bandwidth requirement decreases. 

TABLE I.  DSLASH OPERATION PERFORMANCE 

 DP (GFLOPS) SP (GFLOPS) Half (GFLOPS) 

18-reconstruct 35 85 109 

12-reconstruct 32 98 119 

8-reconstruct 16 104 128 

TABLE II.  CG SOLVER PERFORMANCE 
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DP DP 18 DP DP 18 33 

DP DP 18 SP SP 8 91 

DP DP 18 half half 8 110 

SP SP 8 SP SP 8 100 

SP SP 8 half half 8 120 

half half 8 half half 8 124 

 
Table II shows the performance of the CG solver for 
different precision and reconstruct techniques. We achieve as 
high as 100 GFLOPS for single precision and 33 GFLOPS 
for double precision.  In mixed precision mode, we can 
achieve 110 GFLOPS for double precision accuracy and 120 
GFLOPS for single precision accuracy, with “sloppy” 
computation in half precision.  However, as we use sloppy 
precision to compute, the number of iterations it takes to 
converge in CG solver increases. Despite this, the overall 
performance is still better due to the improved Dslash 
performance with the sloppy precision.  The multi-mass 

solver performance is close to the CG solver performance. 
Input spinors, links, and the resulting spinor solution are 

moved in and out of the GPU memory through PCIe 
interface. However, this data movement cost is well 
amortized as it takes hundreds or even thousands of 
iterations to converge. 

III. CONCLUSIONS AND FUTURE WORK 

Performance achieved by the CG kernel depends on the 
data type used and lattice size, but at the same time it is 
significantly higher than the performance per CPU core on a 
conventional CPU system.  For example, single-precision 
floating-point implementation of the CG solver achieves 100 
GFLOPS on the GPU and just under 3 GFLOPS on the 2.8 
GHz Intel Xeon core, or about 33x speedup. 

We already implemented the remaining three most time-
consuming kernels from MILC and we have done a 
preliminary analysis of the MILC implementation with 
regards to multi-GPU and multi-node parallelization 
strategy.  The challenge lays in the parallel CG solver 
implementation.  There are multiple global scatter/gather 
operations in the current MILC implementation that require 
data movement between GPUs on multiple compute nodes, 
which is detrimental to sustaining good overall performance.  
This is still a subject of further analysis and implementation. 
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