
GpuC: Data parallel language extension to CUDA 
Zeki Bozkus 

 Department of Computer Engineering 
Kadir Has University, Istanbul, 34083 Turkey  

 
Abstract 

In recent years, Graphics Processing Units 
(GPUs) have emerged as a powerful accelerator for 
general-purpose computations. Current approaches to 
program GPUs are still relatively low-level 
programming models such as Compute Unified Device 
Architecture (CUDA),  a programming model from 
NVIDIA, and Open Compute Language (OpenCL), 
created by Apple in cooperation with others. These two 
programming models have all the complexity of 
parallel programming such as breaking up the task 
into smaller tasks, assigning the smaller tasks to 
multiple CPUs to work on simultaneously, and 
coordinating the CPUs. There is a growing need to 
lower the complexity of programming these devices.  In 
this paper, we propose a data-parallel loop (forall) 
extension to the CUDA programming model. We 
describe our prototype compiler named GpuC.  

Keywords: GPGPU, Data Parallel, CUDA, 
Compiler Optimizations 

1. Introduction 

We used GCC, which is an open-source compiler that 
is used by many researchers as the platform for 
implementing application-specific compilers. We 
added an extension to GCC to accept forall loops and 
the other CUDA constructs. Forall loop computations 
are more suitable for the Single Instruction Multiple 
Data (SIMD) model of the GPU architecture. 

The compiler performs source-to-source translation from 
CUDA with data-parallel loops (forall) to CUDA C language 
for NVIDIA GPU. This programming model will make GPU 
programming accessible and allow many real-world 
applications that are easily implemented on GPUs to run 
significantly faster than on the regular multi-core systems 
without GPU. The results will help many other 
interdisciplinary applications such as molecular simulations, 
computational chemistry, and medical imaging.  

2. Forall statement 

High Performance Fortran([9], [10]) introduced a 
statement forall as an alternative to the DO-loop. The 
intent  of this statement was  that its contents can be 

executed in any order, independent of the index. It 
therefore gives the possibility of a parallel 
implementation. GpuC has adapted a similiar forall 
statement with C style syntax as shown in Figure 1.(a) 
However, some rules are introduced in order to avoid 
side effects, such as function calls inside forall cannot 
be recursive and cannot have side effects on global data 
or on its arguments. Figure 1.(b) shows a simple 
example of forall which inverts the elements of a 
matrix, avoiding division with zero. 

 
Figure 1: Data parallel forall statements 

GpuC tries to execute forall statements on GPU device 
by efficent parallel implementation . If, for some 
reason,  it can not execute on GPU , the compiler 
informs the user with a warning attached with a reason 
at compile time. In this sequential execution case, the 
compiler replaces the forall with a series of regular for 
statements. The forall can have a scalar variables at the 
left hand side assignment. GpuC can anaylze these 
cases and recgonize the reduction pattern which will be 
explanied the more detaill on Section 3. 

3. Reduction recognition at forall 

An important aspect of data parallelism is the reduction 
operation where a reduction function computes a scalar value 
from an array. The reduction operation is a simple and 
powerful parallel primitive with a broad range of application. 
Table 1 shows a number of reduction functions and explains 
their mathematical definition. Many parallel programming 
paradigms feature a set of reduction operations, among them 
are HPF [10], OpenMP [2], and Accelerator [9]. These 
parallel languages provide explicit features to express 
reduction operation such as function calls or compiler 
directive with a reduction clause as in the case of OpenMP. 
However, GpuC will try to detect reduction pattern in forall 

 
forall ( index0 = index0_expression1; index0_expression2, 
         index1 = index1_expression1; index1_expression2, 
         ... 
         indexN = indexN_expression1; indexN_expression2) 
         statements; 
 
    (a)forall statement syntax 
 
forall ( int i = 0; i < N; i++, int j = 0; j < N; j++)  { 
           if( Y[i][j] !=  0) X[i][j] = 1.0 / Y[i][j]; 
} 

    (b) an simple forall example 
 

http://gcc.gnu.org/�


loops by recognizing certain patterns of assignments from 
arrays to a scalar variables. 

Reduction function Definition 

SUM(A) ∑
=

N

i
iA

0
)(  

PRODUCT(A) ∏
=

N

i

iA
0

)(  

DOTPRODUCT(A,B) ∑
=

N

i
ixBiA

0
))()((  

MAXVAL(A) max
0

N

i=
A(i) 

MINVAL(A) 
N

i 0
min
=

A(i) 

Table 1: show reduction functions and definitions 
where array A[N], B[N]. 

Table 2 specifies a mapping used by GpuC between forall 
code patterns and the reductions they represent. GpuC 
detects the patterns and calls the corresponding predefined 
functions. These functions can only be applied to a few data-
types such as int, and float. When an array is passed as an 
argument to some of reduction primitives, it is also necessary 
to provide information such as its shape, size, dimension and 
type etc. All this information is stored into structure which is 
called array descriptor type (ADT). 

To detect the reductions patterns of Table 2, our 
compiler performs a data flow analysis (DFA). The 
compiler finds a set of scalar and array variables read 
in the forall statement (USES) and a set of scalar 
variable written in the forall (DEFS). It then uses this 
DFA information to find matching patterns of Table 2.  

Reduction Pattern Reduction run-time 
library calls 

R = 0.0; 
forall(int i = 0; i < N; i++)  
       R = R + A[i]; 

 
Reduce_sum_float(float 
*A, ADT A_shape, float 
R); 

R = 1.0; 
forall(int i = 0; i < N; i++)  
       R = R * A[i]; 

 
Reduce_product_float(fl
oat *A, ADT A_shape, 
float R); 

R = 0.0; 
forall(int i = 0; i < N; i++)  
       R = R + A[i] * B[i]; 

 
Reduce_dotproduct_float
(float *A,ADT A_shape,  
                        
float *B,ADT 
B_shape,float R); 

R = MIN_FLOAT; 
forall(int i = 0; i < N; i++)  
      if( A[i] > R) R = A[i]; 

 
Reduce_maxvalue_float(f
loat *A, ADT A_shape, 
float R); 

R = MIN_FLOAT; 
forall(int i = 0; i < N; i++)  
      if( A[i] > R) R = A[i]; 

 
Reduce_minvalue_float(f
loat *A, ADT A_shape, 
float R); 

 
Table 2: mapping forall patterns to corresponding 
reduction run-time library routines. 

Our reduction functions were implemented using the 
algorithm presented by Haris [14]. He presented an 
algorithm to calculate parallel scan operations by using 
balanced trees on GPU. The presented scan algorithm 
consists of two phases; the reduce phase and the down 
sweep phase. The first phase is known as a parallel 
reduction. The phase is enough to calculate the 
reduction function. The CUDA code is available online 
[4]. The code is implemented on shared memory of 
GPU.  

4. Forall kernel definition at the device 

The kernel function should handle the distribution of 
the computations across thread blocks and across 
threads within a thread block. The aim of the generated 
code is to optimize memory accesses whether data is in 
the global memory or it is in the shared memory of a 
thread block. Figure 7 gives the generated code of the 
forall at Figure 4.a.  

Each thread block in the grid must have the same 
number of threads. Depending on the array sizes, this 
may result into excess threads that do not have data to 
operate on.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Generated code of  kernel definition at the 
device for forall at Figure 4.(a). 

5. Related work 

Accelerator project [9] has a similar goal as our 
compiler. Instead of parallel loop, Accelerator is an 

#define tile_x 32 
#define tile_y 32 
__global__ void forall_loop1_lhs_dim1_kernel( float A_device,  
                                              float B_device, 
                                              float C_device) 
{  
  // STEP 1: shared memory decleration with tile 
  __shared__ float a_shared[tile_x][tile_y]; 
  __shared__ float b_shared[tile_x][tile_y]; 
  __shared__ float c_shared[tile_x][tile_y]; 
 
  // STEP 2: calculate the number of tile iteration 
  int ntile_x = PROBLEM_SIZE_X / tile_x + 1; 
   
  // STEP 3: Start tiling 
  for(int i = 0; i < ntile_x; i++) { 
       
      // STEP 4: load inputs to the shared memory tiles by coalescing 
      coalesced_copy(b_device, b_shared,...); 
      coalesced_copy(c_device, c_shared,...);   
   
      // STEP 5: perform the data parallel kernel computation 
      for(int i=0; i < tile_y; i++ ) { 
          int glb_idx = local_to_global(i,tile_y, 
                              NBLOCK1_X,NTHREAD1_X,tid,bid); 
          // bank-conflict-freee shared memory array index 
          if(is_range(gbl_indx))  
            a_shared[thid][i]=                          
b_shared[thid][i]+c_shared[thid][i]; 
      } 
       
     // STEP 6: Copy resuts back to the global dim  
     coalesced_copy(a_shared,a_device,....);  
} 
 

 



array-based language based on C# and all computation 
is done via operations on arrays. It provides a higher-
level programming model. Programmers do not have to 
divide computations into kernels and no aspect of 
GPUs is exposed to programmer. The Accelerator 
compiles the data-parallel operations on the optimized 
GPU pixel shader code. 

OpenMP-to-GPGPU [8] compiler translates OpenMp 
shared-memory programs into CUDA-based GPGPU 
programs. This work identifies several key 
transformation techniques to enable efficient GPU 
global memory access such as loop-swap and matrix 
transpose techniques for regular applications and loop 
collapsing for irregular ones. Our approach similiar to 
OpenMP-to-GPGPU compiler in  that we also support 
a familiar loop level parallelism. By contrast, our 
compiler uses tiling technique to explore the efficiency 
of the shared memory on GPU. We have different 
approaches to map the computation on the GPU. In 
addition, our compiler atomatically recognize the 
reduction on the forall statement. 

Compile-time transformation techniques [12] have 
been proposed to address critical performance 
influencing factors on GPUs. The proposed work 
optimizes affine loop nests using a polyhedral compiler 
model. This mathematical compiler model of data 
dependence is used for efficient data access from GPU 
global memory and parallelizes the nested loops. Our 
compiler does not perform data dependence analyzes. 
Parallelism is explicit with the forall construct. This 
work also copies the portion of the data to a tile at the 
shared memory to benefit for the data reuse. However, 
we copy data from global memory to shared memory 
even if there is no data reuse to get the performance 
benefit of coalescing global memory accesses on the 
GPU architecture. Moreover, we have developed 
gather and scatter run-time routines for irregular 
problems since the array subscripts are only known at 
run-time. 

CUDA-lite [13] provides special annotations not a 
compiler to help programmers to optimize memory 
performance under CUDA programming environment 
for GPU. CUDA-lite generates codes for optimal tiling 
of global memory data.  This is an important task due 
to the large effect memory performance has on overall 
performance. Our compiler uses similar memory 
optimizations as CUDA-lite. However, our compiler 
automatically extracts the memory optimizations as 
well as generates code to parallelize. 

6. Conclusion 

In this paper, we proposed a data parallel forall loop as 
an extension of CUDA programming languages. We 
showed the compilation steps. The result is a more 
high-level programming model that allows its users to 
take full advantage of the GPU’s powerful hardware.  
We are working to present experimental results from 
four NAS benchmarks to show performance gains at 
our proposed GpuC data parallel language. 

12. References 

[1] Scott J. Norton, Mark D. Dipasquale. TREADTIME: The 
Multithread Programming Guide. 1997.  Prentice Hall. 

[2] OpenMP online. Available: http://openmp.org 

[3] Message Passing Interface Forum. MPI-2 Extensions to the 
Message-Passing Interface, July 1997. Available: http://www.mpi-
forum.org/docs/docs.html. 

[4] NVIDIA CUDA online. Available: 
www.developer.nvidia.com/object/cuda.home.html. 

[5] OpenCL online. Available:  http://www.khronos.org/opencl/ 

[6] Michael Wolfe at the Portland Group. A GPU and Accelerator 
Programming Model. Available www.pgroup.com. 

[7] K. O’Brien, Z. Sura, T. Chen and T. Zhang. Supporting OpenMP 
on Cell. International Journal of Parallel Programming (IJPP), 
36(3):289-311, June 2008. 

[8] Seyong Lee, Seung-Jai Min and Rudolf Eigenmann. OpenMP to 
GPGPU: a compiler framework for automatic translation and 
optimization. Proceedings of the 14th ACM SIGPLAN symposium 
on Principles and practice of parallel programming. Pages 101-
110, 2009.  

[9] D. Tarditi, S.Puri, and J. Oglesby. (2006). Accelerator: Using 
data-parallelism to program GPUs for general-purpose uses. Proc. 
12th Int. Conf. Architect. Support Program. Lang. Oper. Syst., (pp. 
325-335). 

[10] Zeki Bozkus, Alok N. Choudhary, Geoffrey Fox, Tomasz 
Haupt, Sanjay Ranka, Min-You Wu: Compiling Fortran 90D/HPF 
for Distributed Memory MIMD Computers. J. Parallel Distrib. 
Comput. 21(1): 15-26 (1994). 

[11] Zeki Bozkus, Larry Meadows, Steven Nakamoto, Vincent 
Schuster, Mark Young: PGHPF - An Optimizing High Performance 
Fortran Compiler for Distributed Memory Machines. Scientific 
Programming 6(1): 29-40 (1997). 

[12] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram 
Krishnamoorthy, J. Ramanujam, Atanas Rountev, P. Sadayappan: A 
compiler framework for optimization of affine loop nests for 
gpgpus. ICS 2008: 225-234. 

[13] Sain-Zee Ueng, Melvin Lathara, Sara S. Baghsorkhi, Wen-mei 
W. Hwu: CUDA-Lite: Reducing GPU Programming Complexity. 
LCPC 2008: 1-15. 

[14] Mark Harris: Many-core GPU computing with NVIDIA CUDA. 
ICS 2008. 

http://www.developer.nvidia.com/object/cuda.home.html�
http://www.pgroup/�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Choudhary:Alok_N=.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Fox:Geoffrey.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Haupt:Tomasz.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Haupt:Tomasz.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Haupt:Tomasz.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Ranka:Sanjay.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wu:Min=You.html�
http://www.informatik.uni-trier.de/~ley/db/journals/jpdc/jpdc21.html#BozkusCFHRW94�
http://www.informatik.uni-trier.de/~ley/db/journals/jpdc/jpdc21.html#BozkusCFHRW94�
http://www.informatik.uni-trier.de/~ley/db/journals/jpdc/jpdc21.html#BozkusCFHRW94�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Meadows:Larry.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/n/Nakamoto:Steven.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Schuster:Vincent.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Schuster:Vincent.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Schuster:Vincent.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Young:Mark.html�
http://www.informatik.uni-trier.de/~ley/db/journals/sp/sp6.html#BozkusMNSY97�
http://www.informatik.uni-trier.de/~ley/db/journals/sp/sp6.html#BozkusMNSY97�
http://www.informatik.uni-trier.de/~ley/db/journals/sp/sp6.html#BozkusMNSY97�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bondhugula:Uday.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Krishnamoorthy:Sriram.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Krishnamoorthy:Sriram.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Krishnamoorthy:Sriram.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Ramanujam:J=.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Rountev:Atanas.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sadayappan:P=.html�
http://www.informatik.uni-trier.de/~ley/db/conf/ics/ics2008.html#BaskaranBKRRS08�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/u/Ueng:Sain=Zee.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lathara:Melvin.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Baghsorkhi:Sara_S=.html�
http://www.informatik.uni-trier.de/~ley/db/conf/lcpc/lcpc2008.html#UengLBH08�
http://www.informatik.uni-trier.de/~ley/db/conf/ics/ics2008.html#Harris08�

	1. Introduction
	2. Forall statement
	3. Reduction recognition at forall
	4. Forall kernel definition at the device
	Figure 7: Generated code of  kernel definition at the device for forall at Figure 4.(a).
	5. Related work
	6. Conclusion
	12. References

