
1

Takagi Factorization on GPU using CUDA
Gagandeep S. Sachdev, Vishay Vanjani and Mary W. Hall

School of Computing, University of Utah, UT, 84102
Email: {singhs,vishayv,mhall}@cs.utah.edu

Abstract—Takagi factorization or symmetric singular value
decomposition is a special form of SVD applicable to symmetric
complex matrices. The computation takes advantage of symmetry
to reduce computation and storage requirements. The Jacobi
method with chess tournament ordering was used to perform the
computation in parallel on a GPU using the CUDA programming
model. We were able to achieve speedups of over 11x and 7x
over CPU serial and Pthreads implementations, respectively, for
matrix sizes greater than 512 × 512.

I. INTRODUCTION

Takagi factorization or symmetric singular value decompo-
sition (SSVD) is a special form of singular value decom-
position (SVD) applicable to complex symmetric matrices.
An advantage of this form is that it accounts for symmetry
and thus saves computation and storage. Takagi factorization
has applications in the Grunsky inequalities, computation of
the near-best uniform polynomial, rational approximation of
a high degree polynomial on a disk, complex independent
component analysis problems [2], complex coordinate rotation
method, optical potential method [1], nuclear magnetic reso-
nance [3] and diagonalization of mass matrices of Majorana
fermions [4].

Takagi factorization for a complex symmetric matrix A is
defined as:

A = USUT

U is a complex unitary matrix and its columns are called
Takagi vectors of A. S is a diagonal singular value matrix
of Takagi values where each value corresponds to a Takagi
vector from U. On the other hand, in SVD, the third matrix is
V ∗ and not UT . This means that it is a conjugate transpose of
a different matrix V. Given the SVD result, we can generate
Takagi vectors by modifying the singular vectors correspond-
ing to non-zero singular values. This methodology is explained
in [3]. The operation of computing SVD and then generating
Takagi vectors is however inefficient because two matrices of
singular vectors have to be computed rather than one.

There exist a variety of algorithms for performing SSVD
namely: Jacobi[1], Divide & Conquer [3] and Twisted factor-
ization method[2]. An analysis of the amount of data parallel
computations in each of these algorithms was done. Both of
the latter two have a complexity of n2 and are comprised of
two stages of tridiagonalization via Householder transforms
followed by diagonalization by the respective algorithms.
These two algorithms are not as parallelizable as the Jacobi
algorithm. The Jacobi method with a complexity of n3 is not
suited for sequential implementation but proves to be the best
method for parallel execution. It is also the most numerically
stable method of computing Takagi factorization [8].

In this paper, we attempt to accelerate Symmetric SVD
for dense matrices using GPUs and the CUDA programming
model. The Jacobi method with chess tournament ordering was
used to accomplish this. We also parallelized the serial Jacobi
implementation [4] using Pthreads for comparison against the
GPU version. We were able to achieve a speedup of more than
11x and 7x over serial CPU and Pthreads implementations,
respectively, for matrix sizes greater than 512×512. The rest of
the paper is organized as follows. Section II describes related
work. Section III describes the Jacobi eigenvalue algorithm.
Section IV explains the GPU mapping and optimizations. Sec-
tion V presents experimental results and Section VI concludes
the paper.

II. RELATED WORK

The concept of porting general purpose computing ap-
plications including matrix decompositions on GPUs is not
new. Fast SVD was implemented [6] on a 7900 GTK, a
generation before CUDA enabled GPUs. Recently, Lahabar
and Narayanan [5] implemented SVD on a GPU using CUDA.
It was done by bidiagonalization using a series of Householder
transforms followed by diagonalization using an implicitly
shifted QR algorithm. It is an O (mn2) algorithm and im-
plemented only for real matrices. As earlier stated, additional
computations are needed to get Takagi vectors from unitary
matrices generated by SVD and real matrices can generate
complex Takagi vectors too. This suggests that there is a need
for an implementation that accelerates the symmetric SVD of
complex symmetric matrices.

A CPU implementation of Takagi factorization by the Jacobi
method has been done by Hahn [4]. This is the serial version
implementation of the methods provided in [1]. The paper [1]
however also presents a mutithreaded version of the Jacobi
algorithm. Qiao [7] gives a Matlab implementation of Takagi
factorization using Lanczos tridiagonalization methods and
Factorization of symmetric tridiagonal matrix using implicit
QR, divide and conquer [3], and the twisted factorization [2]
method.

III. JACOBI METHOD

The Jacobi method is an algorithm to find eigenvectors and
eigenvalues of a symmetric matrix. It is a stable method and
has been proved to be the most accurate [8] when compared
to other algorithms which involve tridiagonalizing the matrix.
Also,the Jacobi method guarantees a solution. Complexity of
this algorithm is of the order n3 and therefore only suited
for small and medium sized matrices. To calculate the Takagi
vectors and Takagi values using the Jacobi method, we start

2

with a complex symmetric matrix A and perform sweeps until
convergence is reached. Convergence is checked by calculating
the sum of all off-diagonal elements at the end of each sweep.
At convergence, off-diagonal elements are close to zero and
the eigen values and vectors are returned in the S and U matrix
respectively. This algorithm is quadratically convergent; so in
most cases the convergence happens within 30 sweeps.

Each sweep involves iterating over all possible pairs of
rows and columns. Therefore, there are NC2 iterations in each
sweep. Each iteration involves applying a transformation to
two rows and two columns. For example, if (i,j) is the unique
pair of indices for the current iteration, then we update the
ith row and jth row followed by ith column and jth column.
For each iteration a 2 × 2 complex symmetric sub-matrix is
created and diagonalized by applying the Jacobi rotation such
that: [

Aii Aij

Aji Ajj

]
= V (i, j)

[
di 0
0 dj

]
V T (i, j)

This is followed by applying the V(i,j) transform to all
row elements. This stage is called the row update and is
mathematically represented as:[

Ai,1:n

Aj,1:n

]
← V H(i, j)

[
Ai,1:n

Aj,1:n

]
After the completion of row updates, columns are updated

in the following way:[
A1:n,i A1:n,j

]
←

[
A1:n,i A1:n,j

]
V (i, j)

Serial implementation of Takagi factorization using Jacobi
is done using the cyclic ordering [1]. As the name suggests,
the first index is incrementally selected and the second index
is selected by looping over all indices greater than the first
index.

IV. GPU IMPLEMENTATION

The order of selection of index pairs in a Jacobi sweep does
not alter the results as each operation is a unitary transform.
This implies that pairs that do not share a common index
can be computed in parallel. For example, in two subsequent
pairs (1,2) and (1,3), which share a common index 1, the
Jacobi update (1,3) cannot start until the (1,2) update finishes.
However, a similar pair (3,4) can be computed in parallel with
(1,2). So, given a symmetric matrix of dimension n and n
being even, n/2 Jacobi updates can be carried out in parallel.
In the CUDA programming model, this implies that there
will be n/2 threads across blocks. We will however need a
mechanism of generating n/2 unique pairs over n-1 times such
that all possible (NC2) combinations of indices are covered.
[1] describes chess tournament ordering for this purpose. It
was modified as in Fig.1 to make programming of this logic
easier. So, in a matrix of dimension ten, the first set of pairs
will be (0,9), (1,8), (2,7), (3,6), (4,5). The next set of pairs
will be (1,9), (2,0), (3,8), (4,7), (5,6) and so on. These indices
can be generated trivially using algorithm 1.

Each thread will diagonalize a 2 × 2 matrix and apply the
transform to two rows and two columns. To make the Jacobi
updates completely independent and parallelizable, we now

10 2 3 4

56789
 id =0 id =1 id =2 id =3 id =4T TT T T

Fig. 1. Chess tournament ordering

need to store the full matrix A rather than storing just the
upper half of the symmetric matrix. This is because in case
of half storage, a column’s lower half will continue into a
row, which in turn will be part of some other pair’s column.
Also we will need to globally synchronize between the row
and column updates. This is because one pair’s rows can be
another pair’s column and would lead to race conditions if not
made mutually exclusive. On the GPU, we do this through
host synchronization [9] i.e. letting all threads finish and
exiting out of the GPU kernel. In order to minimize copying
of data between GPU and CPU, many auxiliary kernels are
used to perform tasks like initialization of Takagi values
and vectors on the GPU itself, calculation of threshold, and
making diagonal elements non-negative. The time taken for
computation is large enough to cover the overhead of multiple
kernel calls. Algorithm 2 explains the GPU kernels and their
use. Storage space taken in the GPU was (4n2+9n)×4 bytes.

Algorithm 1 CHESS TOURNAMENT ORDERING

Require: Thread ID - Tid, Dimension - N, Iteration - i
1: Index 1 = (Tid+i)%(N-1)
2: if (Tid != 0) then
3: Index 2 = ((N-Tid)+i)%(N-1)
4: else
5: Index 2 = N-1
6: end if

The target NVIDIA architecture has a compute capability
[9] up to 1.3 and lacks caches to global memory. Memory
coalescing [9] is one way of obtaining optimum memory
bandwidth to global memory in these architectures. Although
structures for complex numbers provide better readability
and advantage in cached architectures, it does not provide
coalescing if each thread accesses a subsequent structure from
an array in memory. Thus, complex numbers were stored in
two different arrays of float variables containing the real and
imaginary parts. Effects of all optimizations done were verified
in the CUDA visual profiler [9]. In our case, the two kernels
which diagonalize and perform updates are called multiple
times and consume most of the time taken by the overall
computation. The common technique of getting chunks of data
in shared memory from global memory in a coalesced way
and then accessing it such that there are no bank conflicts
[9], provided much benefit and was implemented wherever
possible. Loop unrolling also improved timing and was done
to a limit where registers are not spilled into local memory [9].
However, it was not possible to make all memory accesses in
row and column updates coalesced. This is because the unique
pair of indices handled by a thread in a given iteration might
not be contiguous with adjacent threads.

3

Algorithm 2 GPU IMPLEMENTATION

1: Copy complex Matrix A from host to GPU
2: Initialize auxiliary data structures real diagonal matrix D

and complex Takagi vector matrix U (GPU)
3: while (Convergence not reached) do
4: Calculate threshold
5: for i = 0 to N − 1 do
6: Diagonalization and row updates (GPU)
7: Host synchronization
8: Column and Unitary matrix updates (GPU)
9: Host synchronization

10: end for
11: end while
12: Make diagonal elements non-negative and sort(GPU)
13: Copy U and D from GPU

V. RESULTS

In this section, we compare the performance of our GPU
implementation with an optimized serial [4] and Pthreads
version. All experiments were done on Intel Core i7 - 920
PC and an NVIDIA GTX 260 with CUDA 2.3. NVIDIA
GTX 260 has 216 stream processors divided into 27 streaming
multiprocessors and a total memory of 896 MB. This GPU’s
peak double precision performance is 1/8x of its peak single
precision performance. Thus we resorted to using single preci-
sion numbers on all CPU and GPU implementations. We verify
the correctness of GPU implementation by comparing it with
the CPU version term by term. Timing results are averaged
over ten random dense matrices of single precision numbers
for each size. This was done to avoid a particularly good or
bad sample. Parallel Takagi factorization using Pthreads was
implemented using the methodology described in [1].

Table 1 gives the average execution time of the serial,
Pthreads and CUDA implementation of the code. All of the
timing measurement includes the time to copy the matrices to
and from GPUs. Matlab implementations [7], even with faster
algorithms were much slower than the serial C implementation
provided by [4] and so were not included in the comparison.
As shown in Table 1, the GPU implementation surpasses the
CPU serial version at dimension of 64. GPU speedup over
serial CPU version increases linearly to a size of 512 and
slows down after that. This is depicted in Fig. 2. Our GPU
implementation achieved a maximum speedup of 11.69x for
matrix size of 2048. Pthreads on the other hand reaches a
maximum speedup of 1.64x over the serial CPU implementa-
tion of the same matrix size on an Intel four core machine.
The GPU implementation was more than 7x faster than this
Pthreads version. The serial CPU version of any size bigger
than this becomes impractical and takes up lot of processing
time.

VI. CONCLUSION

In this paper, we presented implementation of SSVD or
Takagi factorization using the Jacobi method on commodity
GPUs. It achieves a good speedup over serial and Pthreads
CPU implementations. The Jacobi method on GPU proves

TABLE I
EXECUTION TIME FOR SERIAL CPU, PTHREADS AND GPU VERSION

Size Serial CPU
Execution
Time (s)

Pthreads
Execution
Time (s)

Pthreads
Speedup
(over CPU)

GPU
Execution
Time (s)

GPU
Speedup
(over CPU)

16 0.002 0.015 - 0.007 -
32 0.026 0.093 - 0.031 -
64 0.221 0.536 - 0.117 1.879
128 2.010 3.183 - 0 .512 3.92
256 21.343 23.347 - 2.527 8.45
512 171.683 167.479 1.025 15.497 11.07
1024 1486.223 1121.015 1.325 129.801 11.45
2048 11965.910 7255.588 1.649 1023.602 11.69

Fig. 2. Speedup of GPU and Pthreads over serial CPU for different matrix
sizes

to be the most stable and accurate method [8] of computing
SSVD in parallel. With the advent of NVIDIA Fermi architec-
ture, we expect to see much higher speedup because the few
non-coalesced memory reads in our case will now be cached.
Also, with a speedup of 8X double precision performance
over present architectures, NVIDIA Fermi architecture will
make Jacobi coupled with double precision numbers the most
accurate and efficient method of computing symmetric SVD
of a complex symmetric matrix.

REFERENCES

[1] X. Wang and S. Qiao, A Parallel Jacobi Method for the Takagi
Factorization. In Proceedings of the international Conference on Parallel
and Distributed Processing Techniques and Applications - Volume 1 (June
24 - 27, 2002).

[2] X. Wang and S. Qiao, A twisted factorization method for symmetric SVD
of a complex symmetric tridiagonal matrix. Technical Report No. CAS
06-01-SQ, McMaster University.

[3] Wei Xu, Symmetric singular value decomposition of complex symmetric
matrices. ETD Collection for McMaster University (January 1, 2007).

[4] T. Hahn, Routines for the diagonalization of complex matrices.
[physics/0607103].

[5] S. Lahabar and P. J. Narayanan, Singular value decomposition on GPU
using CUDA. In Proceedings of the 2009 IEEE international Symposium
on Parallel & Distributed Processing (May 23 - 29, 2009).

[6] V. Bondhugula, N. Govindaraju and D. Manocha , Fast SVD on Graphic
Processors. http://gamma.cs.unc.edu/NUMERIC/SVD/.

[7] S. Qiao, Fast SVD of Hankel/Toelpitz and Takagi Factorization (Matlab).
http://www.cas.mcmaster.ca/ qiao/software/takagi/matlab/readme.html.

[8] Demmel, James; Veselic, Kresimir, Jacobi’s method is more accurate than
QR. SIAM J. Matrix Anal. Appl. 13 (1992), no. 4, 1204–1245.

[9] David B. Kirk and Wen-mei W. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach,1st ed. Morgan Kaufmann, February
2010.

