
Simulations of Large Membrane Regions using GPU-enabled Computations
- Preliminary Results

Narayan Ganesan and Michela Taufer
Dept. of Computer & Inf. Sciences

University of Delaware
Email: {ganesan, taufer}@udel.edu

Sandeep Patel
Dept. of Chemistry and Biochemistry

University of Delaware
Email: patel@udel.edu

Abstract—In this short paper we present a GPU code for
MD simulations of large membrane regions in the NVT and
NVE ensembles with explicit solvent. We give an overview of
the code and present preliminary performance results.

Keywords-Algorithms; Performance; Ewald Summation;
PME; Reaction Force Field Method

I. I NTRODUCTION

Roughly one-third of the human genome is composed
of membrane-bound proteins that are only now becoming
structurally resolved due to heroic experimental efforts.Fur-
thermore, pharmaceuticals target membrane-bound protein
receptors (such as G-protein coupled receptors, GPCR’s),
thus emphasizing the importance of such systems to human
health and understanding of dysfunction. When studying
membrane-bound protein receptors, it is necessary to move
beyond the current state-of-the-art simulations that only
consider small regions (or patches) of physiological mem-
branes since the heterogeneity of the membrane spans length
scales much larger than included in these smaller model
systems. Towards this end, our work proposes to apply large-
scale GPU-enabled computations of extended phospholipid
bilayer membranes, in this case dimyristoylphosphatidyl-
choline (PC) based lipid bilayers.

In this paper we present a GPU code for MD simula-
tions that enables the fast simulations of whole membrane
regions in the NVT and NVE ensembles. The code uses
a modified version of the CHARMM force field (not the
CHARMM program) [1] and includes different methods
for the representation of the electrostatic interactions,i.e.,
reaction force field (RF) and Ewald summation methods. It
reads standard files, e.g., pdb and psf files, as input files.
The code implementation supports both global neighbor list
structure and cell-based list structure calculations for the
non-bonded interactions. The solvent in which the mem-
brane is immersed is treated explicitly. This paper gives an
overview of the code and preliminary performance results.

II. CODE DESCRIPTION

Our MD code uses a modified version of the CHARMM
force field in terms of force field functional forms and

measurement units [1]. The intramolecular potential, which
includes bonds, angles, and dihedral, is as follows:

Vintra =
kb

2

[

(

r − r0
)2

+
(

r − r0
)2
]

+ (1)

ka

2

(

θ 6 − θ0

6

)2

wherekb is the bond force constant,r0 is the equilibrium
bond distance,ka is the angle force constant, andθ0

6 is the
equilibrium bond angle.

Non-bonded Lennard-Jones interactions are modeled us-
ing a standard 6-12 dispersion-repulsion potential:

VLJ =

pairs
∑

i,j

(

4ǫij

[

(

σij

rij

)12

−
(

σij

rij

)6
])

(2)

whereǫij andσij are the potential well depth and the van
der Waals radius, respectively, used in the Lennard-Jones
potential.

Electrostatic interactions can be computed either by us-
ing the reaction force field (RF) or the Ewald summation
method. Recent studies by Hummeret al. indicate the
adequacy of reaction field approaches with diffuse charge
representations for treating molecular and ionic systems,
with structural properties in agreement with those obtained
using lattice based methods [2]. Reaction field formulations
have also been recently applied to studies of hydration and
salt-bridge effects related to proteins [3]. We propose theRF
method as a faster, still accurate, alternative to the Ewald
summation method in membrane simulations. When using
RF, electrostatic interactions are represented by a site-site
based RF potential [4], [5] to represent the usual Coulomb
interaction. Between two charged sites,i and j, the RF
potential used for the present study is:

V RF
ij = qi qj

(

1

rij

+
(ǫRF − 1)

2ǫRF + 1

r2

ij

r3
c

)

(3)

whereqi is the charge on atomi, and likewise for sitej.
The value ofrc is the spherical cavity radius beyond which
the RF formalism treats the environment as a continuum
(whose perturbation by the charge distribution within the



spherical cavity gives rise to the RF). This potential is shifted
smoothly to zero at the cutoff and pairs separated by a
distance greater than the cutoff are neglected.

In the Ewald summation method the electrostatic interac-
tions are divided into the direct space (Edir), the reciprocal
space (Erec), and the self energy (Eself ) contributions to the
total energy, depending on the distance of the interaction [6].
The three contributions are explicitly given by:

Edir =

N−1
∑

i=1

N
∑

j>i

qiqjerfc(βrij)

rij

(4)

Erec =
1

2πV

∑

~m 6=0

exp(−π2 ~m2/β2)

~m2
S(~m)S(−~m) (5)

Eself = − β√
π

∑

i=1

Nq2

i (6)

whereβ is the Ewald parameters and~m = (m1, m2, m3) are
reciprocal space lattice vectors,V is the volume of the unit
cell in the reciprocal space andS(~m) is the lattice structure
factor given by,

S(~m) =
∑

j

qj exp(~m~rj)

The solvent is treated explicitly. Water bond, angle, and
charge parameters are transferred directly from the SPC/Fw
model of Wuet al. [7];

III. C ODE IMPLEMENTATION ON GPU

We use CUDA for our code implementation. Bond, angle,
and dihedral interactions are each handled by separate ker-
nels (i.e.,Dihed, Angle, andBonds respectively). This
reduces the size of each kernel and minimizes the amount
of data required for an individual kernel call. Bond, angle,
and dihedral kernels evaluate the potentials by using a list
approach in which each thread iterates through all atoms
bonded to or involved in an angle with an atomi and
accumulates the appropriate forces. Unlike non-bonded lists,
the bond, angle, and dihedral lists never require updating,so
they are constructed once on the CPU at the beginning of
the simulation and then copied to the GPU.

Non-bonded interactions (Lennard-Jones and electro-
static) are calculated by a single kernel (NonBondForce),
when the Ewald summation method is not used. When a
global neighbor list structure is used, each thread iterates
through the neighbor list for a single atomi and accumulates
the interactions betweeni and all its neighbor list entries
in kernelNBListBuild. The texture cache, which speeds
up reading from global memory locations that are not con-
tiguous, is used for reading the coordinates of the neighbor
atoms. Shifted force forms are used for the electrostatic and
Lennard-Jones potentials to ensure that both energies and
forces go smoothly to zero at the cutoffrcut. The global
neighbor list is constructed using the Verlet list approach[8],

in which a list is constructed for each atom containing all
atoms within a cutoffrlist > rcut. This way, the list only
needs to be updated when an atom has moved more than
1

2
(rlist−rcut). To construct this list on the GPU, each thread

checks the distance between an atomi and all other atoms,
adding toi’s neighbor list those atoms that are withinrlist

of i. This process is accelerated by having each block take
advantage of the on-chip shared memory using a previously
described tiling approach [9].

When a cell-based neighbor list structure is used, the list
of all the neighboring atoms within the cutoffrcut is build
in a similar fashion in kernelNBListBuild, but instead
of searching the global list of all the atoms in the system,
only atoms in the neighboring cells are searched. The entire
domain of atoms is decomposed into regular cubic cells
of edge length equal torcut. Therefore while building the
neighbor list for each atom, only the atoms within the current
cell and 26 neighboring cells in 3-dimensional space need to
be searched for atoms within the cutoff distance. The cells
themselves are updated efficiently by carefully keeping track
of movement atoms within the cells and employing atomic
intrinsics where possible.

The Smooth Particle Mesh Ewald (PME) component of
the Ewald summation method (Erec) requires us to deal
with location of charges. The entire procedure involves: (1)
spreading the charges within a neighboring volume of 4x4x4
cells for each charge in order to obtain a 3-dimensional
charge matrix, (2) computing the inverse 3D FFT of the
matrix, (3) multiplying the charge matrix by pre-computed
structure constants, (4) computing the forward FFT of the
product, and (5) summing the entries of the matrix to obtain
energy and forces [6].

Of these five steps, the charge spreading is one of the
most compute intensive. In [10], where another example
of MD code with PME for GPUs is presented, this step is
implemented by a three-step process which involves placing
the charges on lattice points with utmost one charge per point
(with extra charges considered separately), accumulatingthe
impact of charges for each points, and finally accumulating
the effects of the extra charges. Our implementation differs
from the implementation in [10] since we accumulate
impact of charges based on a local list of charges for each
lattice point. Our charge spreading on GPU is performed
by maintaining a local neighbor list for each lattice point.
Each lattice point is managed by a single thread which
iterates only through a local list of charges, exclusive to
that point, rather than the global list. The charge spreading is
performed in theChargeSpread kernel and the updating
is done in theLatticeUpdate. The FFT computations,
i.e., inverse and forward FFTs, are performed using the
CUDA FFT library. The kernelCUFFTExec performs both
the FFTs. The multiplication of the charge matrix by pre-
computed structure constants is performed by the kernel
BCMultiply. Last but not least, the summation of the



entries of the matrix to obtain energy and forces is performed
by the kernelPMEForce.

IV. PERFORMANCE

Performance was measured on a commonly used mem-
brane benchmark, the lipid bilayer membranes (DMPC) with
two different sizes, one four times larger than the other
with 93.6 X 93.6 X 152.0Å, 68484 atoms and 46.8 X
46.8 X 76.0 Å, 17004 atoms respectively. Lipid bilayer
membranes are an important class of biological components,
and fundamental study of their structure, dynamics, and
interactions with peptides, proteins, and medicinally-relevant
small molecules is important.

To measure the performance, we ran 10,000 steps of a
NVE MD simulation (constant energy) using arcutoff of
8Å with a buffer cutoff rlist for the list updates of 9.5̊A.
We studied the code scalability and we profiled the different
force-fields methods and data structures with the two DMPC
systems. Note that one has exactly the same conformation
but is four times larger than the other. More in particular,
we measured average, max, and, min time per MD step
in milliseconds when the step does and does not include
a list update as well as the ratio of steps including a list
update over the total number of steps (ratio). Finally, we
computed the overall average time per step over the whole
MD simulation of 10,000 steps. Table I presents the results
for the smaller DMPC membrane (17004 atoms) when using
a simple global neighbor list structure for the non-bond
interactions with RF (I), a cell-based list structure with RF
(II), a global neighbor list structure with PME (III), and a
cell-based list structure with PME (IV). Table II presents
the same results but for the larger membrane system (68
484 atoms).

Table I
PERFORMANCE SPECIFICATIONS OFDMPC WITH 17K WITH NEIGHBOR

LIST AND RF (I), WITH CELL-BASED LIST AND RF (II), WITH

NEIGHBOR LIST AND PME (III), AND WITH CELL -BASED NEIGHBOR
LIST AND PME (IV).

Steps w/o Update Steps w Update Tot.
(msec/step) (msec/step)

avg max min avg max min ratio avg

I 7.5 7.7 7.4 78.8 80.4 77.8 6.3 12.0
II 8.2 8.4 8.2 82.0 85.9 76.8 6.3 12.9
III 15.7 16.3 15.4 90.0 90.9 88.9 5.3 19.6
IV 15.9 16.5 15.6 103.7 108.7 98.9 5.3 20.5

From the data structure point of view, we observe that
for small systems, smaller than 20K, a global neighbor
list implementation is more efficient that a cell-based list
implementation since the time to update the non-bond list is
smaller (see time forNBListBuild). For large molecular
systems such as the large membrane of 67K atoms, a cell-
based list structure is more efficient. When considering the
small membrane, our code currently enables simulations of
7.2ns per day with RF and 4.4ns per day with PME with 1fs

Table II
PERFORMANCE SPECIFICATIONS OFDMPC WITH 68K WITH NEIGHBOR

LIST AND RF (I), WITH CELL-BASED LIST AND RF (II), WITH
NEIGHBOR LIST AND PME (III), AND WITH CELL -BASED NEIGHBOR

LIST AND PME (IV).

Steps w/o Update Steps w Update Tot.
(msec/step) (msec/step)

avg max min avg max min ratio avg

I 30.5 34.6 29.7 739.1 756.7 719.2 6.6 77.4
II 35.0 39.5 34.1 278.3 320.5 265.0 6.7 51.2
III 62.9 78.4 60.8 790.4 820.6 779.2 5.6 103.9
IV 64.8 82.4 61.8 292.7 365.2 251.1 5.6 77.7

step size. When considering the large membrane, our code
enables simulations of 1.6ns per day with RF and 1.1ns per
day with PME. Again a 1fs step size is used.

V. CONCLUSION

In this paper we present a flexible MD code for GPUs
integrating both Ewald summation and reaction force field
methods. The code supports explicit solvent representations
and enables fast simulation of large membrane regions. Work
in progress includes the optimization of the GPU code and
the analysis of the membrane simulations.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion, grant #0941318 and grant #0922657, by the U.S. Army,
grant #ARO 54723-CS, and by the NVIDIA University
Professor Partnership Program.

REFERENCES

[1] B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swami-
nathan, and M. Karplus,J. Comp. Chem., 4, 187–217, 1983.

[2] G. Hummer, D. Soumpasis, and M. Neumann,J. Phys.:
Condens. Matter, 6, A141–A144, 1994.

[3] T. Ghosh, S. Garde, and A. Garcia,Biophys. J., 85, 3187–
3193, 2003.

[4] M. Neumann,J. Chem. Phys., 82, 5663–5672, 1985.

[5] J. A. Barker and R. O. Watts,Mol. Phys., 23, 789, 1973.

[6] U. Essmann, L. Perera, and M. Berkowitz,J. Chem. Phys.,
103(19), 8577–8593, 1995.

[7] Y. Wu, H. L. Tepper, and G. Voth,J. Chem. Phys., 124,
024503, 2006.

[8] M. P. Allen and D. J. Tildesley. Oxford: Clarendon Press,
1987.

[9] L. Nyland, M. Harris, and J. Prins, inGPU Gems 3. Addison-
Wesley, 31, 677–695, 2008.

[10] M. Harvey, G. Giupponi, and G. De Fabritiis,J. Chem. Theory
Comput., 5, 16321639, 2009.


