
Medium-grained functions mapping using modern GPUs
Jiřı́ Filipovič

Masaryk University
fila@ics.muni.cz

Jan Fousek
Masaryk University
izaak@mail.muni.cz

Abstract—The map is a higher-order function that applies a given
function to the list or lists of elements producing the list of results. The
mapped function is applied to each element of the list independently,
thus can be performed for all elements in parallel, making the GPU an
interesting platform to be implemented on.

Although the map introduce a high level of parallelism when it is
applied to sufficiently large number of elements, its implementation can
be difficult with respect to utilizing GPU parallel model granularity by
mapped functions.

In this paper, we show the performance gap between fine-grained
(per-thread) and coarse-grained (per-block) implementation of mapped
function and introduce the medium-grained implementation that can
fill this gap. We also discuss some memory access implications arising
from this method and show example how to use them to estimate the
performance of different implementations.

I. INTRODUCTION

The modern GPUs need to run many threads concurrently to be
used efficiently. To met this requirement, accelerated tasks must
expose enough parallelism, which can be achieved by running a
function working on large data elements, or by mapping the function
to many smaller elements in parallel.

In this paper, we focus on mapping the function to the list of
relatively small data elements. We call that n-ary function f is
mapped to lists L1, .., Ln, when the f is applied element-wise to
L1, .., Ln producing a list of results. Formally map(f, L1, .., Ln) =
[f(l1,1, .., l1,n), f(l2,1, .., l2,n), .., f(lm,1, .., lm,n)], where li,j is j-th
element of Li.

We focus on NVIDIA CUDA platform in this paper as it is a
first and broadly used general purpose architecture and programming
model of GPUs. It is out of the scope of this paper to describe
basic CUDA concepts, which can be found in NVIDIA CUDA
Programming Guide [1]. The straightforward use of CUDA threading
model suggests to run one instance of mapped function (i.e. producing
single output) in two possible granularities:

• fine-grained, when function is performed by one thread
• coarse grained, when function is performed by all threads within

one thread block
To use a GPU efficiently, it is important to utilize its fast on-chip

memory (mainly registers and shared memory) for the intermediate
data used during computation. However, the on-chip memory is
shared by all threads running on multiprocessor and has restricted
size, thus it can reduce the parallelism and consequently overall GPU
performance when it is used extensively. The functions with small on-
chip memory requirements can be implemented to be solved by one
GPU thread, whereas the function with higher memory requirements
has to be parallelized to distribute its memory requirements between
several threads. If we follow the CUDA threading model straightfor-
wardly, we should implement a parallel function to be performed by
a thread block. However, for some functions, the thread block can

This work was supported by the Ministry of Education, Youth and Sports
of the Czech Republic under the research intent No. 0021622419 which is
highly appreciated.

be too large structure. Its size should be a multiple of 32 threads
(the size of one warp), and some functions do not expose as large
amount of parallelism but use too much of memory resources to be
efficiently performed by thread.

For functions that cannot utilize per-thread either per-block imple-
mentation efficiently, we introduce an implementation pattern, where
each function is performed by a few threads and a few functions run
within a thread block. We call it medium-grained pattern, as it does
not fit to both fine-grained per-thread and coarse-grained per-block
implementation. This pattern brings some issues in efficient usage of
the shared memory, which are addressed in this paper.

We have introduced a medium-grained pattern in [3], where it
has been used mainly to implement kernels for mapped matrix
or tensors multiplications allowing to speed-up matrix assembly
in finite elements method. However, there was no deeper analysis
of this pattern and its relation to specifics of GPU hardware as
well as no example of implementation or performance evaluation
of any medium-grained function. Independently, Klöckner at al. [4]
used the same pattern in acceleration of discontinuous Galerkin
method. Although some general characteristics of medium-grained
implementation is discussed, it is mainly focused at problems related
with applications in discontinuous Galerkin.

All performance evaluations mentioned in this paper has been
performed using GeForce GTX 280.

II. THE SPACE FOR MEDIUM GRANULARITY

In this section, the gap between areas where fine- and coarse-
grained functions perform well as well as the performance impact of
medium-grained implementation filling this gap is shown.

We have chosen the matrix matrix multiplication as a well-known
task to demonstrate the impact of medium-grained implementations,
i.e. map(·, A,B) is computed (A and B are lists of input matrices
A1, .., An and B1, .., Bn respectively). The very fast implementation
of matrix multiply kernel is known [2], nevertheless, it is usable only
for large matrices and cannot be efficient if it is mapped to many
very small matrices in parallel.

We have implemented four matrix multiplications – a fine-grained,
a coarse-grained and two medium-grained ones. The fine-grained ma-
trix multiplication implementation performs the whole multiplication
in one thread, the coarse grained computes one element of resulting
matrix in one thread. The first medium-grained implementation is
analogous to the coarse-grained one, but there are more matrices
multiplied within thread block. In the second medium-grained im-
plementation, one thread computes one row of resulting matrix.

All matrices in our example are stored in continuous blocks in
global memory, thus its loading into shared memory is necessary to
maintain coalesced memory access for all implementations.

The Figure 1 left shows the performance of mapped matrix multi-
plication using different granularities. The fine-grained implementa-
tion yields better performance using small matrices, because of little
resource usage, but descends quickly with growing size of matrices.

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12 14 16

b
a
n
d
w

id
th

 (
G

B
/s

)

matrix size

per-thread
per-block

medium-grained 1
medium-grained 2

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12 14 16

b
a
n
d
w

id
th

 (
G

B
/s

)

threads or half-warps

threads per half-warp
half-warps per MP

half-warps per block

Fig. 1. Left: the performance of mapped matrix-matrix multiplications in
different granularities, Right: the performance of global memory transfers.

The coarse-grained one performs well for larger matrices, which can
be solved in sufficient number of threads in parallel and does not
yield significant number of unused threads in warp. The first medium-
grained implementation fills the performance gap between coarse- and
fine-grained ones and for larger matrices behaves similarly to coarse-
grained one. The second medium-grained implementation uses more
shared memory per thread, thus its performance is lower for larger
matrices, but for small ones its performance is higher due to faster
access to shared memory, as it is mentioned below.

The size of the performance gap depends on the problem type – if
more resources per thread are used, the performance of fine-grained
implementation descends faster with growing size of input, but the
coarse-grained implementation does not scale, thus the gap is wider.
This occurs e.g. by using rectangular matrices.

III. GPU PERFORMANCE CHARACTERISTICS

In this section, the performance specifics of GPUs important for
function mapping are discussed. The global memory performance
for different warp and multiprocessor occupancies is benchmarked
and the slowdown of some suboptimal shared memory patterns
unavoidable in medium-grained implementations is evaluated.

A. Shared Memory

In case of medium-grained implementations, the bank conflicts can
occur even if the mapped function accesses shared memory without
bank conflicts, when more instances of the function run within single
half-warp. We can recognize two sources of this inter-functions bank
conflicts:

• threads of one function instance access data in exclusive memory
banks in parallel, but the mapping of data addresses to banks
overlaps for multiple elements accessed by multiple functions
instances within half-warp

• all threads within the single function instance access data in
same location, but when multiple functions runs in half-warp,
multiple locations are accessed forbidding single broadcast

In the first mentioned case, the memory bank conflicts can be
removed by padding or storing data elements interleaved (allowing to
align particular data elements so the memory bank access exclusivity
is reached both within function as well as among multiple functions).
However, in the second mentioned case, the bank conflicts cannot be
removed, because only one broadcast can be performed in time.

The slowdown of memory access with bank conflicts without
any broadcasting is determined by the number of threads accessing
different addresses in the same bank. The determination of slowdown
when some threads reads the same location in memory is not
so straightforward. The NVIDIA documentation describes a non-
deterministic algorithm choosing randomly the broadcasting bank and
performing normal data access to the rest of memory banks [1].
The choice of the broadcasted address can affect bank conflicts

1 2 3 4 5 6 7 8

1 2 3 4 5
ha lf-warps

functions

Fig. 2. The mapping of function instances to threads. Threads are depicted
as bars, bold lines divides particular half-warps and the color differentiates
particular functions, in this case 10 threads performs single function instance.

degree, thus all possible choices should be take into account where
the most probable bank conflicts degree is evaluated. According to
our microbenchmarks, the bank conflicts degree estimation matches
experimental results quite tightly when perfectly random choice
of broadcasted address is expected, thus we have not noticed any
strong evidence to search for more precise prediction method. Since
the adjacent half-warps can access shared memory differently, it is
necessary to study sufficient number of half-warps (the access pattern
repeats after at most n half-warps where the n is number of threads
reading the same value).

The Figure 2 illustrates example of mapping the function instances
to threads. All threads within single function instance reads single
value. The first half-warp generates 2-way bank conflict because
it needs two broadcasts to read all requested data, second half-
warp generates 2-way bank conflict if data for second and third
function are broadcasted before data for fourth function (two threads
from fourth function gets data in parallel with this two broadcasts),
otherwise three broadcasts are needed yielding 3-way bank conflict.
The third half-warp generates 2-way bank conflict, the fourth and fifth
are symmetric to second and first, respectively. Taking all possible
choices of broadcasts into account, the average bank conflict is 2.26-
way in this case.

B. Global Memory

To be able to estimate global memory bandwidth, we have bench-
marked the GPU for different warp and multiprocessor occupancy,
and different block sizes. The benchmarks loads 16 floats into shared
memory, synchronize and stores it back to global memory, which is
the characteristic behavior of our functions. At Figure 1 right, the
performance of various number of active threads in half-warp as well
as various block sizes when single or maximal number of blocks runs
at multiprocessor are depicted.

IV. PERFORMANCE PREDICTION

Having knowledge of how the GPU performs in tasks specific
for medium-grained implementations, the developer can predict the
performance of particular implementations allowing him or her to
implement only a version with should reach the best performance. In
this section, we demonstrate the performance prediction on mapped
matrix multiplication presented in Section II, namely the multiplica-
tion of 4× 4 matrices.

Two tasks are evaluated separately – the global memory transfers
needed to perform the given function, and the floating point instruc-
tions throughput of the function. When the GPU occupancy is good
and sufficient number of blocks run at multiprocessor concurrently,
the computation and memory transfers can overlap and the function
runs at speed determined mainly by slower of this tasks.

The 4 × 4 matrix multiplication performs 128 floating point
operations and moves 48 floats from/to global memory, giving the
flop-to-world ratio 2.6. The function computes ci,j =

∑3
k=0 ai,k ·bk,j

where i determines column and j determines row of the matrix.
The fine-grained implementation needs 48 floats in shared memory

per thread, thus only about 85 threads can run in multiprocessor (the

fine coarse medium 1 medium 2
GMEM estimated 70 101 114 114
GMEM measured 49.9 71.6 98.2 104.5
on-chip estimated < 339 93.3 93.3 128.7-162.3
on-chip measured 143.9 85.4 90.3 135.3

total measured 41.8 40.9 80.6 88.8

TABLE I
ESTIMATED AND MEASURED BANDWIDTH OF MATRIX MULTIPLICATION.

exact number is influenced by compiler using shared memory to store
function parameters and by the block size), restricting the memory
bandwidth to about 70 GB/s. The computation performs one load
instruction to one multiply-add (MAD) instruction (the arithmetic
instructions can work only with one operand in shared memory [2]).
To omit bank conflicts in accessing multiple matrices in parallel,
the shared memory space allocated for each matrix is enlarged by
1 float. To perform single function, the 64 MAD, 64 load and 16
store instructions is used yielding about 226.2 GFlops on GTX 280
(the MAD with one operand in shared memory needs additional 2
cycles per warp [2]). Nevertheless, because of very poor occupancy,
the real performance can be significantly lower (at least 192 threads
is recommended to hide registry read-after-write latency [1]).

The coarse-grained implementation has sufficient GPU occupancy
and the half warp occupancy has not significant impact to global
memory bandwidth, which is bounded by 101 GB/s in this case.
However, there are numerous memory bank conflicts. Within thread
block, 4 threads in the same row simultaneously reads the same
number from a, and 4 threads in the same column the same number
from b. This yields 4-way bank conflict slowing the load and MAD
instructions by factor of 4. The large degree of serialization caused
by bank conflicts yield good GPU instruction pipeline occupancy
even when only half of threads in warp is utilized. Altogether, the 64
MADs and 64 loads (all of them running at 25 % of maximal speed
due to bank conflicts), has to be performed per function. The shared
memory stores are not necessary – resulting elements can be stored to
global memory from registers. The estimation of computation without
global memory transfers is 62.2 GFlops.

The first medium-grained implementation can utilize full warps,
thus the global memory can perform at maximal speed about
114 GB/s. The estimation for computation without global memory
transfers is same as for coarse-grained implementation.

The second medium-grained implementation still keeps good GPU
occupancy (about 341 threads can run at multiprocessor), thus the
estimation of global memory bandwidth is same as in previous case.
The reading of elements of b yields 4-degree bank conflicts as in
previous medium-grained implementation, but the reading of a can
be conflict-free when each row of a is enlarged by one unused float.
The storing results into shared memory is necessary here to allow
efficient transfer to global memory (bank conflicts can be removed by
same padding as in a). This implementation needs 64 MADs and 64
loads, one of them running at 25 % of maximal speed and 16 stores.
The performance estimation for computation is from 85.8 GFlops to
108.2 GFlops depending of compiler choice of elements used by load
instructions and used by MADs.

Table I compares estimated and measured performance (to be
easy comparable, performance of on-chip computation has been
expressed as corresponding bandwidth). Both memory bandwidth and
instruction throughput estimations are quite accurate excepting the
case when GPU is heavily underutilized (the case of fine-grained

implementation). The total performance estimation needs to estimate
both memory bandwidth and instruction throughput, because it is
limited by slower one. Although estimation of this two particular
values is quite accurate, the total performance is also limited by the
ability of GPU to overlap memory transfers and computation, which
is obviously worse in the coarse grained implementation when only
blocks of half-warp size are utilized.

Although we cannot estimate overall performance very precisely,
the particular estimations gives a good comparison of possible
implementations allowing us to implement one with best chance
to outperform the others. Moreover, the estimation of instruction
throughput is important when more complex function is developed
reusing many data already stored in on-chip memory (e.g. a fusion
of few algebraic routines).

We note in the case of 4× 4 matrix multiplication, the broadcasts
producing bank conflicts can be completely removed. In the case
of coarse and first medium-grained implementation, the computation
of dot product of vectors from input matrices can start at (i + j)
mod 4 for element i, j of resulting matrix. For second medium-
grained implementation, we can start dot product computation at j
mod 4 for j-th row of resulting matrix. Although these modifications
yields better results for 4 × 4 matrices, we decided to not discuss
them here, because they remove bank conflicts only for this specific
size and for most sizes of matrices reduce the performance.

V. CONCLUSION AND FUTURE WORK

In this paper, we have argued that some mapped functions can-
not perform optimally using both fine-grained and coarse-grained
implementations. The medium-grained pattern has been introduced
and its usability has been demonstrated using example implementa-
tion of matrix-matrix multiplication. We have analyzed main GPU
characteristics important for medium-grained implementations. This
knowledge have been demonstrated at performance estimation of
mapped matrix multiplication function.

The usability of the medium-grained pattern is restricted to func-
tions with specific size and level of parallelism. However, the size of
data elements processed by mapped function as well as a exploitable
parallelism are fixed for specific task and thus independent to task
size , so the utilization of medium-granularity is necessary to exploit
maximal available GPU computational power in some cases.

The development of mapped functions becomes significantly more
difficult when the function is more complex, i.e. performing complex
task using several simpler algorithms in serial to transform input to
output. In this case, the choice of proper parallel granularity as well
as functions complexity is challenging. In [3], we have proposed
the decomposition-fusion approach, when as simple as is meaningful
functions are implemented and later some of them are fused into more
complex ones. Currently, we are working on automatic tool searching
the state space of possible fusions and choosing the functions with
proper granularity to be fused.

REFERENCES

[1] NVIDIA CUDA Programming guide version 2.3. NVIDIA, 2009.
[2] Vasily Volkov, James Demmel. Benchmarking GPUs to tune dense linear

algebra. SC ’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, 2008.

[3] Jiřı́ Filipovič, Igor Peterlı́k, Jan Fousek. GPU Acceleration of Equations
Assembly in Finite Elements Method – Preliminary Results. Symposium
on Application Accelerators in High-Performance Computing 2009.

[4] Andreas Klöckner, Tim Warburton, Jeffrey Bridge, Jan S. Hesthaven.
Nodal Discontinuous Galerkin Methods on Graphics Processors. Journal
of Computational Physics, Volume 228, Issue 21, 2009.

