
1

Performance Comparison of Cholesky Decomposition
on GPUs and FPGAs

Depeng Yang, Junqing Sun, JunKu Lee, Getao Liang, David D. Jenkins, Gregory D. Peterson, and Husheng Li
Department of Electrical Engineering and Computer Science

University of Tennessee, Knoxville, TN, 37996

Abstract—Cholesky decomposition has been widely utilized for
positive symmetric matrix factorization in solving least square
problems. Various parallel accelerators including GPUs and
FPGAs have been explored to improve performance. In this
paper, Cholesky decomposition is implemented on both FPGAs
and GPUs by designing a dedicated architecture for FPGAs and
exploiting massively parallel computation for GPUs. Performance
of the Cholesky decomposition on GPUs, CPUs, FPGAs, and
hybrid systems are compared in both single and double precision.
Results show that the FPGA implementation has the highest
efficiency with respect to clock cycles compared with our pure
GPU implementation, a hybrid system with MAGMA, and a
CPU with LAPACK. The GPU implementation is better than
other implementations using MAGMA and LAPACK library for
small matrices, and the hybrid system with MAGMA is the best
for larger matrices.

I. INTRODUCTION

Cholesky decomposition is often adopted for positive sym-
metrical matrix decomposition in solving least square prob-
lems, such as signal processing [1], machine learning and data
regression [2]. However, Cholesky decomposition is compu-
tational expensive with O(N3) complexity. Modern parallel
accelerators such as FPGAs and GPUs can be utilized for
accelerating Cholesky decomposition.

In this paper, Cholesky decomposition is implemented on
both FPGAs and GPUs for computation acceleration. On
FPGAs, a dedicated accelerator is designed with only one
scalable triangular linear equation solver with 64 Processing
Elements (PEs). On GPUs, the massively parallel computation
is well organized and optimized for best performance by
rearranging the computation procedure and managing memo-
ries. Moreover, computation accelerations on the GPU, CPU,
FPGA, and hybrid system are compared from many perspec-
tives, such as the programming language, flexibility, memory
volume, memory bandwidth, and computational precision. Per-
formance of implementations on the GPU, FPGA, CPU, and
hybrid system for Cholesky decomposition are also compared.

II. CHOLESKY DECOMPOSITION

The Cholesky decomposition factors a positive symmetric
matrix to the product of a lower triangular matrix and its
transpose, of which two general ways are given by:

A = UTU (1)
A = LDLT (2)

where A is a positive symmetric matrix. U is the upper
triangular matrix. L is the unit lower triangular matrix with

AdderMultiplier PESubstracterFIFO1Triangular linear equation solver

AdderMultiplier PESubstracterFIFO1Memory Memory

Control Logics

Fig. 1: Triangular linear equation solver for FPGA Cholesky
decomposition

units along the diagonal line. D is the diagonal matrix in which
all elements are zeros except the diagonal elements.

Cholesky decomposition has O(13N
3) complexity with

heavy inner data dependency. Introducing a diagonal matrix
as shown in Eq. (2) in Cholesky decomposition has many
advantages, such as avoiding square roots and alleviating data
dependency [4]. In this paper, we design and implement the
LDLT Cholesky decomposition in Eq. (2) on both FPGAs
and GPUs for computation acceleration.

III. IMPLEMENTATION

A. FPGA implementation

We design a dedicated hardware architecture for Cholesky
decomposition on FPGAs. For FPGA implementation, the
traditional Cholesky decomposition in Eq. (1) results in a
long latency square root operation, which makes it hard to
design an efficient pipelined PE. Therefore we realize an
LDLT Cholesky decomposition on FPGAs. To achieve good
performance, we only implement one triangular solver for the
FPGA. Fig. 1 shows the implemented Cholesky decomposi-
tion on FPGAs utilizing the triangular linear equation solver
[4]. Control logic, memory and the communication bus can
be optimized for the best performance. For small matrices,
the memory bandwidth is not an issue. The number of the
pipelined PEs determines the performance. We implement 64
PEs for the LDLT Cholesky decomposition. More details can
be found in [4].

2

B. GPU implementation

We also implement an LDLT Cholesky decomposition on
GPUs. In contrast to FPGAs, a GPU has a fixed SIMD-
like hardware architecture for general computation. To achieve
good performance, massively parallel computation should be
primarily used and carefully orchestrated to provide enough
threads to keep the functional units busy while managing
memory to hide latencies. Instead of the iterative Cholesky
decomposition procedure which is utilized for FPGA im-
plementation, a ”right-looking” algorithm is adopted [6] for
LDLT Cholesky decomposition on GPUs. Our LDLT ”right-
looking” blocked algorithm is similar to LLT ”right-looking”
algorithm [6], but it is modified by removing square root
operations and re-organizing the computation procedure to
improve performance. The computation starts with the top-
left sub-matrix. Following that, the strip of bottom-left sub-
matrices is calculated. Next, the rest of the elements are
updated by taking advantage of matrix-matrix multiplication
routines on GPUs. More details are in [6] [3]. We optimize the
GPU implementation for good performance. Shared memory
is fully utilized. Memory access patterns are optimized for
coalesced memory reads and writes. Banking conflicts in
shared memory are also avoided. All these efforts benefit the
final performance.

C. Performance comparison of FPGA and GPU implementa-
tions

Both FPGAs and GPUs can be utilized as accelerators to
speedup Cholesky decomposition. Generally, GPU has a fixed
SIMD hardware architecture, which can provide massively
parallel execution resources and high memory bandwidth.
FPGAs provide basic logic units, function blocks, lookup
tables, and routing resources which are highly customizable for
fine grained parallelism. One expects that FPGAs can provide
the best performance, flexibility, and low overhead because the
hardware architecture can be fully customized for the specific
application. Enabling configurable hardware has costs in both
size and performance. Moreover, FPGA programmers must
design the dedicated architecture and consider all hardware
details, while GPUs tend to be easier to programs and have
less hardware controllability.

The programming language for GPUs is CUDA [5] or
OpenCL [10], an extension of C and an associated API
for general purpose applications. By using CUDA, a GPU
programmer does not need to know many hardware details.
In CUDA, computation tasks are performed by thousands of
threads in 3-dimensions, which are further organized as thread
blocks and grids. CUDA provides a friendly interface for pro-
grammers by hiding hardware architecture details. However,
for the best performance, the CUDA program for Cholesky de-
composition acceleration still needs to be tuned and optimized
according to the characteristics of the application and GPU
hardware limits, such as arithmetic operation order, memory
access pattern and communication.

For FPGAs, we utilize VHDL as the hardware description
language. FPGA programmers have full control on the low
level logic circuits, programmable resources and hardware

architecture. IP CoreGen [] provides plenty of reusable and
optimized IP cores, such as arithmetic units for scientific
computations, which can save lots of designers’ time. How-
ever, the dedicated hardware architecture for a particular
application is still needed to be specially designed for the
best performance. All hardware details, such as pipeline depth,
latency, throughput, and memory bandwidth should be fully
investigated and considered for FPGA designers.

Another way for accelerating Cholesky decomposition is to
utilize heterogeneous GPUs and CPUs by using the Magma
library [7]. The symmetric matrix is first partitioned into
blocks. Massively parallel tasks like matrix multiplication are
performed on GPUs and other serial tasks with heavy inner
data dependence such as triangular solvers are executed on
CPUs. The data communication cost between the host CPU
and GPU is covered using data streaming functions.

Both GPUs and FPGAs have good potential to accelerate
computations by exploiting the parallelism. GPUs generally
have more memory resources than FPGAs. The fixed mem-
ory architecture, such as cache, global memory, and shared
memory, along with their associated bandwidths, may slow
down the performance for the Cholesky decomposition. For
example, for the NVIDIA GeForce GTX480 GPU [9], the
peak performance is 1.35Tflops/s in single precision with a
1400MHz frequency. However, due to memory bandwidth this
peak performance is very difficult to achieve for Cholesky
decomposition. For FPGAs, a dedicated triangular linear equa-
tion solver is designed by using several pipelined PEs. The
dedicated scalable architecture can be fully customizable and
optimized, but on-chip memory is very limited. For example,
the newer Xilinx XC6VSX475T in Virtex 6 family FPGA has
only 38,304 KB total memory which can be fully customized,
so the limited memory resource is not suitable for the large
matrix operations. The memory communication bus can be
fully customized for Cholesky decomposition in order to
achieve the best performance. GPUs are more suitable for
large size matrix operation while FPGAs are the best for small
size matrix due to limited but customizable on chip hardware
resources.

GPUs can support single and double floating precision.
When computation is associated with some operations, such
as division, inversion, and square root, results from GPUs lose
some precision. Due to limited hardware resources, the peak
performance for double precision is worse than that for single
precision. For instance, the GTX480 GPU has double precision
performance only one half of the single precision performance
[9], and older GPUs have one eighth the performance of
single precision (or no support for double precision at all).
On FPGAs, IP CoreGen provides IEEE 754 arithmetic units
for both signal and double precision. Moreover, the precision
of those arithmetic units in the PE can be fully customized
by adjusting mantissa and exponential bits. Lower precision
arithmetic units on FPGAs require significantly less hardware
resources than the high precision units, leading to higher
frequency and performance for FPGAs.

3

IV. RESULTS

The Cholesky decomposition is implemented on the latest
representative commercial products of GPUs and FPGAs. The
GPU is an NVIDIA GTX480 card running at 1400MHz. The
CPU is a 2.67GHz Intel Quad Core i7 with 12 GB RAM. The
FPGA is XC6VSX475T in the Virtex 6 family. We utilize
VHDL and IP CoreGen from Xilinx ISE 11.4 for providing
IEEE 754 standard floating point arithmetic units for the PEs.
We also use software compilers OpenCL version 3.0 and gcc
version 4.3.3 for GPU and CPU.

Fig.2 and Fig.3 compare the computation cycles of Cholesky
decomposition implemented on GPUs, FPGAs, CPUs using
LAPACK [8], and a hybrid system using MAGMA [7] in both
signal and double precisions. For the FPGA implementation,
we implement 64 pipelined PEs for the Cholesky decompo-
sition. The FPGA clock cycles are calculated based on the
operations needed for a certain size matrix decomposition.
The maximum achievable frequency on FPGAs is estimated
as 180MHz based on the ISE tool. For the GPU and CPU
implementation, we obtain the computation cycles through
the division of the measured execution time and frequency
clocks (1400MHz). Obviously, the number of cycles using
FPGA, GPU, and CPU all increased with the matrix size.
The FPGA implementation needs the minimum number of
cycles because the hardware architecture is fully customized
and optimized for the Cholesky decomposition. For single
and double precision, our GPU implementation needs much
fewer cycles than LAPACK and MAGMA, indicating more
efficiency and less execution time. When the matrix size is
larger than 512× 512, that performance gap decreases.

Table 1 shows the performance comparison for Cholesky
decomposition. The FPGA implementation is slow due to its
low frequency (180MHz). Our GPU implementation is much
better than LAPACK, and it is still better than MAGMA for
small matrices.

TABLE I: Performance Comparison
Matrix LAPACK MAGMA GPU FPGA

GFLOP/s GFlop/s GFlop/s GFlop/s
512 (SP) 19.49 22.21 58.40 19.23
512 (DP) 11.99 20.52 57.49 19.23
768 (SP) 29.53 38.53 81.87 20.38
768 (DP) 18.12 36.97 54.02 20.38
1024 (SP) 36.07 57.01 67.96 21.0
1024 (DP) 22.06 49.60 42.42 21.0
2048 (SP) 65.66 117.49 96.15 –
2048 (DP) 32.21 87.78 52.74 –

V. CONCLUSION

Cholesky decomposition has been implemented on both
FPGAs and GPUs. For the best performance, a dedicated
architecture is implemented on FPGAs and parallelism is rear-
ranged for GPUs acceleration. Results show that FPGA needs
the minimum number of cycles,whereas the GPU provides
better runtime performance, particularly for larger matrices.

REFERENCES

[1] D. Yang, H. Li, and G.D. Peterson, ”Space-time Turbo Bayesian
Compressed Sensing for UWB system,” IEEE Information Conference
on Communications (ICC) 2010, Kapton, South Africa, 2010.

256 512 768 1024
4

4.5

5

5.5

6

6.5

7

7.5

8

C
yc

le
s:

lo
g1

0

FPGA
GPGPU: OpenCL
Hybrid: Magma
CPU: Linpack

Fig. 2: Performance comparison for single precision

256 512 768 1024
4

4.5

5

5.5

6

6.5

7

7.5

8

C
yc

le
s:

lo
g1

0

FPGA
GPGPU: OpenCL
Hybrid: Magma
CPU: Linpack

Fig. 3: Performance comparison for double precision

[2] D. Yang, H. Li, G. D. Peterson and A. E. Fathy, “UWB Signal
Acquisition in Locationing Systems: Compressed Sensing and Turbo
Signal Reconstruction,” Conference on Information Sciences and Sys-
tems (CISS), Baltimore, MD, Mar., 2009.

[3] D. Yang, G. Tao, D. Jenkins, G. D. Peterson and A. E. Fathy, “High
performance relevance vector machine on GPGPUs,” Symposium on
Application Accelerators in High Performance Computing (SAAHPC),
Knoxville, TN, July, 2010.

[4] D. Yang, G. D. Peterson, H. Li and J. Sun, “An FPGA Implementation
for Solving Least Square Problem,“ The 17th IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), Napa, California,
April., 2009.

[5] NVIDIA CUDA programming guide. Website. 2009.
http://www.nvidia.com/object/cuda home.html#

[6] Cholesky factorization algorithm. [Online]
http://userweb.cs.utexas.edu/∼plapack/icpp98/node2.html

[7] Matrix Algebra on GPU and Multicore Architectures (MAGMA) user
guide. [online]
http://icl.cs.utk.edu/magma/

[8] Linear Algebra PACKage (LAPACK), Version 3.2.1 [online]
http://www.netlib.org/lapack/

[9] NVIDIA Tesla GTX480 computing processor. [Online]
http://www.nvidia.com/object/product geforce GTX480 us.html

[10] OpenCL programming guide. [Online]
http://developer.download.nvidia.com/compute/cuda/3 0/toolkit/docs/
NVIDIA OpenCL ProgrammingGuide.pdf

