
1

High Performance Relevance Vector Machine on GPUs
Depeng Yang, Getao Liang, David D. Jenkins, Gregory D. Peterson, and Husheng Li

Department of Electrical Engineering and Computer Science
University of Tennessee, Knoxville, TN, 37996

Abstract—The Relevance Vector Machine (RVM) algorithm
has been widely utilized in many applications, such as machine
learning, image pattern recognition, and compressed sensing.
However, the RVM algorithm is computationally expensive. We
seek to accelerate the RVM algorithm computation for time sensi-
tive applications by utilizing massively parallel accelerators such
as GPUs. In this paper, the computation procedure of the RVM
algorithm is fully analyzed. Recursive Cholesky decomposition,
the key step in the RVM algorithm, is implemented on GPUs. The
GPU performance is compared with a CPU using LAPACK and
a hybrid system using the MAGMA library. Results show that
our GPU implementation in both single and double precision is
approximately 4 times faster than the CPU using LAPACK and
faster than the hybrid MAGMA code when the matrix size is
small.

I. INTRODUCTION

Relevance Vector Machine (RVM) algorithm [1] shows lots
of advantages compared with the traditional Support Vector
machine (SVM) algorithm and is widely utilized in various
fields, such as machine learning, image pattern recognition,
and compressed sensing [2] [3]. However, the RVM algorithm
is associated with intensive matrix operations, such as matrix-
matrix multiplication, Cholesky decomposition, and matrix
inversion, leading to unacceptably large computation time.
This hampers applying the RVM algorithm into time-sensitive
applications, such as real-time video pattern recognition, on-
line model regression, and fast signal reconstruction. Modern
GPUs enable massively parallel computation, which is suitable
for accelerating the RVM algorithm.

This paper discusses implementing the RVM algorithm on
GPUs for acceleration. The RVM computation procedure is
firstly fully analyzed in order to exploit the massively parallel
computation on GPUs. In the RVM algorithm, the key step is
to calculate the Cholesky decomposition recursively. In con-
trast to the traditional Cholesky decomposition, we implement
a right-looking blocked LDLT Cholesky decomposition on
GPUs based on the previous results in the computation loop.

Performance of the GPU implementation is compared with
that of a CPU implementation using LAPACK and a hybrid
system using MAGMA. We compare the execution times
of the recursive Cholesky decomposition on the GTX480
GPU card using OpenCL, on a CPU using LAPACK, and
on a hybrid system using MAGMA. Results show that our
GPU implementation in both single and double precision is
approximately 4 times faster than LAPACK and faster than
the hybrid mode using the MAGMA library when matrix size
is small.

II. RVM COMPUTATION PROCEDURE

The RVM regression problem can be expressed as:

t = Φw + ϵ, (1)

where the weight vector is w :∈ R1×N , the projecting matrix
is Φ :∈ RM×N , and the t :∈ R1×M is the measurement vector.
The additive noise ϵ is Gaussian distributed with zero-mean
and a variance of β2.

Given the vector t, the matrix Φ, and noise variance β2,
the RVM regression algorithm computes the weight vector w.
Actually, there are many ways to solve the RVM regression
problem, but the Expectation-maximization (EM) method [1]
and the fast RVM method [2] are the two main ways. Because
of its intrinsic parallelism, the EM method is very suitable for
parallel computation. The weight vector w can be recursively
solved. Assume at the i-th iteration, the weight vector wi is
solved by:

wi = β−2ΣiΦiT t (2)

Σi = (β−2(Φi)TΦi +A)−1 (3)

where A is a diagonal matrix containing hyperparameters on
the diagonal line. The symmetric Φi matrix is calculated from
the given matrix Φi, A, and the vector t.

Based on the symmetric Φi matrix, the weight vector wi

can be solved by utilizing the Cholesky decomposition, which
is given by:

Σiwi = (LDLT)iwi = (Φi)T t (4)

where L is a unit lower triangular matrix and D is a diagonal
matrix [4]. Then, Σi = (LDLT)i is the most computational
expensive step, which has O(13N

3) complexity at each itera-
tion.

At the (i+1)-th iteration computation, the matrix Σi+1 is
augmented based on the previous matrix Σi. Then the weight
vector wi+1 is updated by solving Eq. (4). Note that Σi+1

cannot be obtained until the previous weight vector wi is
solved. This computation does not stop until the convergence
condition is satisfied. The convergence condition is to satisfy
the term, for any wj ∈ w, ∥wn

j − wn−1
j ∥ < θ at the n-th

iteration, where θ is set to a small value.
The computation procedure is illustrated and summarized in

Fig.1. The computation procedure requires matrix-vector and
matrix-matrix multiplication, and Cholesky decomposition.
Inside the computation loop, the main step is to calculate the
Cholesky decomposition for the augmented symmetric matrix
each iteration.

2

Start

Termination

Converge? N

Y

Compute matrix

in Eq.(2)

Cholesky
Decomposition
For Eq.(3)

Solve triangular
linear equations

in Eq.(4)

Update the weights
Eq.(3)

Update matrix

1∑

i∑

Fig. 1: Computation procedure for the RVM algorithm

(4)(3)(2)(1)

(1)
(2)

(3)

(4)
(1)(2)(3)

Fig. 2: Computation procedure on GPUs for recursive
Cholesky decomposition

III. IMPLEMENTATION ON GPUS

The most computationally expensive step is the Cholesky
decomposition for the augmented matrix Σ each iteration.
Other computations in RVM including matrix-vector and
matrix-matrix addition and multiplication, can be solved by
calling level-2 and level-3 subroutines in CUBLAS [7], which
has been optimized manually and automatically for the best
performance. This paper will only focus on recursive Cholesky
decomposition for the RVM computation acceleration on
GPUs.

A. GPU implementation

A recursive LDLT Cholesky decomposition for the RVM
algorithm is proposed and implemented on GPUs for acceler-
ation. Each iteration, a Cholesky decomposition is performed
for the symmetric matrix Σi+1 based on the previous results
Σi = LiDi(Li)T . In contrast to the normal Cholesky decom-
position, our problem is how to utilize the previous results
LiDi(Li)T for factoring the augmented matrix Σi+1.

Assume at the (i+ 1)-th iteration, the Cholesky decompo-
sition can be written as:

Φi+1 =

(
Φi ΦT

a

Φa Φb

)
= Li+1Di+1(Li+1)

T

=

(
Li 0
La Lb

)(
Di 0
0 Db

)(
(Li)T LT

a

0 LT
b

)
where Φi = LiDi(Li)T are the previous factoring results.
Note that La is a dense matrix and Lb is a symmetric matrix.
Given the matrix Φi and its decomposition, the Cholesky
decomposition of the matrix Φi+1 is obtained as long as the
matrix La is solved. Then we have:

La = Φa(L
iDi)−T → LiDiLT

a = ΦT
a (5)

To solve the dense matrix La, one needs to solve the
triangular linear equations (forward substitution) since LiDi is
a lower triangular matrix. On GPUs, the matrix La is divided
into several strip matrices for massively parallel computation.
Computations are executed along the column vectors for the
best performance.

Fig. 2 demonstrates the computation procedure of our
recursive Cholesky decomposition on GPUs. Note that the
big grey left-top matrix is previously obtained, which is
Φi = LiDi(Li)T . WLOG, we illustrate (1)(2)(3) steps to solve
the dense matrix La along the strip column vectors. And in
the step (4), we adopt a ”right-looking” algorithm [10] [5] for
LDLT Cholesky decomposition for the best performance.

We optimize the GPU implementation from many perspec-
tives. The matrix is partitioned to 16x16 blocks to improve
efficiency. Shared memory is fully utilized. We also optimize
memory access patterns. Data transfers between global and
shared memory are performed in a consecutive manner [12].
Banking conflicts in shared memory are avoided by increasing
the memory volume. All these efforts benefit the final GPU
performance.

IV. RESULTS

The recursive Cholesky decomposition for the RVM algo-
rithm is implemented and tested on GPUs and CPUs. The
testing system includes a 2.67GHz Intel Quad Core i7 with
12 GB RAM and an NVIDIA GeForce GTX 480 GPU card
[11]. The software compilers include gcc (version 4.3.3) and
NVIDIA CUDA/OpenCL (version 3.0) [6] [12]. We implement
our algorithm in OpenCL, which make it suitable for different
GPU cards without changing any codes. We also utilize the
MAGMA and LAPACK libraries for Cholesky decomposition
in the RVM algorithm. For comparison purposes, we separate
the Cholesky decomposition step in the RVM computation
loop. The execution time is only for the recursive Cholesky
decomposition for the RVM algorithm. Other computation
in the RVM algorithm, including matrix-vector and matrix-
matrix multiplication, and addition is ignored here because
the Cholesky decomposition dominates the runtime.

Fig.3 shows the performance comparison in single precision
on GPUs, CPUs using LAPACK [9], and a hybrid mode
using the MAGMA library [8]. Assume at each iteration,

3

256 512 768 1024 2048 4096
100us

320us

1ms

10ms

100ms

2000ms

Matrix Size

T
im

e:
 1

0l
og

10
 s

ca
le

CPU: LAPACK
Hybrid: MAGMA
GPGPU: OpenCL

Fig. 3: Comparison of computation time for Relevance Vector
Machine in single precision

the symmetric matrix is increased by 256x256. At the first
iteration the matrix size is 256x256. The second iteration the
matrix size is increased to 512x512. For convenience, the x-
axis only marks the matrix size at some iteration. For the
4096x4096 matrix decomposition, in the RVM computation
loop the recursive Cholesky decomposition has to start with
the first 256x256 matrix. Our recursive Cholesky decompo-
sition can take advantage of previous results to improve the
performance while the LAPACK and MAGMA libraries have
to do traditional Cholesky decomposition iteratively. Note
that MAGMA is in a hybrid mode where serial computation
tasks are performed on the CPU while the massively parallel
computation tasks, such as matrix-matrix multiplication, are
executed on the GPU simultaneously for the best performance.
Also the data communication from host CPU to the slave
GPU is well hidden by using streaming functions. In Fig. 3,
it is observed that our GPU implementation averages about 4
times speedup over the CPU using LAPACK at all iterations
from the small 256x256 matrix to the 4096x4096 matrix.
Compared with the MAGMA library, our GPU implementation
is still better when the matrix size is small. With the growth
of the matrix, the performance gap between the pure GPU
and the hybrid MAGMA decreases. When the matrix size is
4096x4096, the execution time on the GPUs is almost the same
as the time using the MAGMA library.

Fig. 4 shows a performance comparison in double precision
on GPUs, CPUs using LAPACK, and a hybrid mode using
the MAGMA. Compared with Fig. 3, our GPU performance
is still much faster than LAPACK at all iterations. And our
double precision performance is almost as good as the single
precision performance because double precision performance
in a GTX480 GPU can achieve up to one half of single
precision peak performance, which is much better than the
previous GPU products such as NVIDIA Tesla. When the
matrix size is 4096x4096, performance using MAGMA in the
hybrid mode is better than our GPU implementation in double
precision.

256 512 768 1024 2048 4096
100us

320us

1ms

10ms

100ms

2000ms

Matrix Size

T
im

e:
 1

0l
og

10
 s

ca
le

CPU: LAPACK
Hybrid: MAGMA
GPGPU: OpenCL

Fig. 4: Comparison of computation time for Relevance Vector
Machine in double precision

V. CONCLUSION

This paper proposes a recursive Cholesky decomposition
for accelerating the RVM algorithm computation on GPUs.
The RVM computation procedure is analyzed. The recursive
LDLT Cholesky decomposition is implemented and tested
on GPUs. Performance comparison shows that our GPU
implementation in single and double precision is much faster
than the CPU using LAPACK and faster than the hybrid mode
using MAGMA for smaller matrix sizes.

REFERENCES

[1] M. E. Tipping, “Sparse Bayesian learning and the relevance vector
machine”, Journal of Machine Learning Research, vol.1, pp.211-244,
2001.

[2] D. Yang, H. Li, and G. D. Peterson, ”Space-time Turbo Bayesian
Compressed Sensing for UWB system,” IEEE Information Conference
on Communications (ICC) 2010, Kapton, South Africa, 2010.

[3] D. Yang, H. Li, G. D. Peterson and A. E. Fathy, “UWB Signal
Acquisition in Locationing Systems: Compressed Sensing and Turbo
Signal Reconstruction,” Conference on Information Sciences and Sys-
tems (CISS), Baltimore, MD, Mar., 2009.

[4] D. Yang, G. D. Peterson, H. Li and J. Sun, “An FPGA Implementation
for Solving Least Square Problem,“ The 17th IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), Napa, California,
April., 2009.

[5] D. Yang, J. Sun, G. Tao, D. Jenkins, G. D. Peterson and A. E. Fathy,
“Performance comparison of Cholesky decomposition on GPGPUs and
FPGAs,” Symposium on Application Accelerators in High Performance
Computing (SAAHPC), Knoxville, TN, July, 2010.

[6] NVIDIA CUDA programming guide. [Online]
http://www.nvidia.com/object/cuda home.html#

[7] NVIDIA CUBLAS library. [Online]
http://developer.download.nvidia.com/compute/CUBLAS Library

[8] Matrix Algebra on GPU and Multicore Architectures (MAGMA) user
guide. [Online]
http://icl.cs.utk.edu/magma/

[9] Linear Algebra PACKage (LAPACK), Version 3.2.1 [Online]
http://www.netlib.org/lapack/

[10] Cholesky factorization algorithm. [Online]
http://userweb.cs.utexas.edu/∼plapack/icpp98/node2.html

[11] NVIDIA Tesla GTX480 computing processor. [Online]
http://www.nvidia.com/object/product geforce GTX480 us.html

[12] OpenCL programming guide. [Online]
http://developer.download.nvidia.com/compute/cuda/3 0/toolkit/docs/
NVIDIA OpenCL ProgrammingGuide.pdf

