
Accelerating Double Precision Floating-point Hessenberg Reduction on FPGA and
Multicore Architectures

Miaoqing Huang
CSCE Department, University of Arkansas

mqhuang@uark.edu

Lingyuan Wang, Tarek El-Ghazawi
ECE Department, The George Washington University

{lwanghpc,tarek}@gwu.edu

Abstract—Double precision floating-point performance is crit-
ical for hardware acceleration technologies to be adopted by
domain scientists. In this work we use the Hessenberg reduction
to demonstrate the potential of FPGAs and GPUs for obtaining
satisfactory double precision floating-point performance. Cur-
rently a Xeon (Nehalem) 2.26 GHz CPU can outperform Xilinx
Virtex4LX200 by 3.6 folds. However, given higher frequency,
more hardware resources and local memory banks, FPGAs have
the potential to outperform multicore CPUs in the near future.
On the GPU side, a GTX 480 (Fermi) achieves 19.4× speedup
against the Xeon CPU. Based on the current trend, GPUs will
keep widening the advantages against both FPGAs and CPUs on
double precision floating-point performance.

I. INTRODUCTION

The performance of double precision (DP) floating-point op-
erations is critical for hardware acceleration technologies (e.g.,
FPGAs and GPUs) to be widely accepted by domain scientists.
Traditionally the floating-point performance of FPGAs was
comparatively poor due to the lack of built-in floating-point
units. Since the transistor count in a chip still follows Moore’s
law, it becomes possible to include high-performance floating-
point operators in large FPGA devices. In this work, we
use the Hessenberg reduction as a case study to demonstrate
the potential of floating-point performance of FPGA devices.
By building fully-pipelined complex processing units and
efficiently utilizing the local memory banks, the FPGA device
is capable of achieving comparable performance to modern
multicore microprocessors when running at 100 MHz, which
is one order of magnitude lower than microprocessors.

The other leading hardware acceleration technology, Graph-
ics Processing Units (GPUs), tries to improve the performance
by adopting streaming processing paradigm. Hundreds of
streaming processors provide a massive parallel processing
power, which already demonstrates significant advantage over
microprocessors. With the new addition of powerful double
precision floating-point units in recently released GPUs (i.e.,
Fermi), it is shown in this work that a single GPU is capable
of outperforming a high end Xeon (Nehalem) quad-core
processor by 19.4 folds.

The selection of Hessenberg reduction in this work is
motivated by two factors. (i) The matrix operations and the
loop dependence in Hessenberg reduction are ubiquitous in
scientific applications. (ii) Hessenberg reduction is the first
phase in solving the eigenvalue problem, which is a very
important problem in scientific domain. Given a complex

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

A

=⇒

× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×

Hessenberg H

(1)

Algorithm 1: Hessenberg reduction (vector-based)
Input: A square complex matrix A with rank n
Output: The Hessenberg matrix H
for k=0 to n− 3 do1.1

vk = House(Ak+1:n−1,k); /*Refer to [1]*/1.2
Ak+1:n−1,k:n−1 = Ak+1:n−1,k:n−1− 2vk(v∗kAk+1:n−1,k:n−1);1.3
A0:n−1,k+1:n−1 = A0:n−1,k+1:n−1 − 2(A0:n−1,k+1:n−1vk)v∗k ;1.4

square matrix A ∈ Cn×n, an eigenvalue λ and its associated
eigenvector v are a pair obeying the relation Av = λv. The
QR algorithm [1] is accepted as a practical solution to deal
with general unsymmetric square matrices. The first phase of
the QR algorithm is to reduce the original matrix A to its
upper Hessenberg form H , as shown in (1). This phase is
called Hessenberg reduction. Hessenberg reduction is carried
out by applying the Householder reflection for n−2 iterations
(see Alg. 1), where n is the rank of the original matrix A.

II. HESSENBERG REDUCTION ON THREE PLATFORMS

A. FPGA Implementation

SGI’s Altix RASC RC100 reconfigurable computer is se-
lected as the platform for FPGA implementation. The FPGA
device, Xilinx Virtex-4LX200, is equipped with 5 banks of
SRAM for local data storage, each of which is 8 MB and has
separate 64-bit read port and write port.

The total number of clock cycles required to reduce a
matrix of rank n to its Hessenberg form is 5

2n
3 − 9

2n − 11
clock cycles by ignoring all latencies and delays. The detail
of the hardware implementation has been reported in [2].
The two basic techniques are (i) building fully pipelined
complex processing units using basic floating-point units, and
(ii) distributing data into multiple local memory banks and
carefully designing data access pattern to maximize processing
parallelism. In the hardware implementation of the Hessenberg
reduction, two physical local memory banks are combined
to form a 128-bit wide logical memory bank so that each
memory entry can store one complete matrix entry. In our
implementation, two 128-bit wide local memory banks are

Fig. 1. The heterogeneous CPU-GPU board

used, each of which has a size of 16 MB. Each memory
bank is divided evenly into 4 regions. We store a whole
matrix into one region, which limits the maximize size of
matrix to 480×480. In order to maximize the data processing
parallelism, we distributed the data (including the original data
and the intermediate data) accordingly between these two local
memory banks so that there is no competition regarding the
memory access ports within each step.

The hardware implementation of Hessenberg reduction oc-
cupies 56,520 (63%) slices on the target FPGA device and
runs at 100 MHz, which is mainly due to the delay of the
critical path in the control logic.

B. GPU Implementation

We have implemented Alg. 1 on both Nvidia Tesla C1060
and GeForce GTX 480 (Fermi) GPUs. Tesla C1060 (architec-
ture code-named GT200) features 30 cores (namely Streaming
Multiprocessors), each of which is further composed of eight
single precision (SP) floating-point CUDA processors and one
double precision (DP) floating-point processor, with 16KB
on-chip storage called shared memory and 64KB of register
windows for massive threading. The total 240 (SP) + 30 (DP)
floating point processors have an observed peak performance
of 78 GFLOPS for double precision. The Tesla GPU is
equipped with 4 GB GDDR3 memory on board with the
theoretical memory bandwidth of 102 GB/s.

The latest GPU offered by Nvidia is code-named as Fermi,
which takes a significant leap forward in architecture high-
lighted by features such as improved double precision per-
formance and configurable cache hierarchy. The model GTX
480 used in our experiments is composed of 15 newly designed
Streaming Multiprocessors. Each SM features 32 CUDA cores
and is capable of 16 double precision fused multiply-add oper-
ations per clock, which is an 8× improvement over the GT200
architecture. Another key architectural difference is that Fermi
has two instruction dispatch units and most instructions can
be dual-issued, which is different from the HyperThreads used
in the Intel Nehalem processors. Two HyperThreads within a
single core of Nehalem processors share a single instruction
fetch and decoding unit.

Both GPUs communicate with a host CPU via PCI Express
2 ×16 bus (as shown in Fig. 1), with observed uni-directional
bandwidth at 5.8 GB/s.

The GPU implementations are developed using CUDA [3].
The vector-based diagonal factorization is composed of a

TABLE I
PLATFORM CHARACTERISTICS

Criteria Xeon (Nehalem) Tesla C1060 GTX 480
Cores 4 240/30 480

Frequency (GHz) 2.26 1.3 1.4
DP GFLOPs 36 78 672

Memory Bandwidth (GB/s) 25.6 102 177.4

major outer loop that factorizes one column/row per step.
Unfortunately, advanced features offered on the GPU such as
asynchronized communication/computation and concurrently
kernel execution cannot be used for such an algorithm, as
dependency exists among the outer loops and all inner steps.
Therefore the GPU implementation suffers from low occu-
pancy for small problem sizes. In order to optimize the GPU
implementation, firstly we managed to squeeze every inner
computation step except the Householder generator into the
GPU to keep the entire matrix remaining in the GPU memory
throughout the computation. Thereby we managed to minimize
the round trip communication overhead to approximately 5%
of overall execution time. All kernels are further incrementally
optimized through memory coalescing, using of shared mem-
ory and assigning more work per thread. The configurable L1
cache on the Fermi GPU introduces more design tradeoffs for
users. In our experiments, for kernels with limited or no usage
of shared memory, configuring the L1 to be 48KB can yield
an approximately 10% improvement. Moreover, we found
that the multi-dimensional threads and blocks configuration
can also affect the cache performance, especially when the
performance differences are examined on both GT200 and
Fermi. We achieved the best performance mostly at the thread
configuration of 32×8 for the Fermi GPU.

C. x86 Implementation

The software platform is a dual-socket Intel Xeon (Ne-
halem) system. The CPU is clocked at 2.26GHz with 8MB
shared L3 cache and 12GB DDR3 memory (total 24GB for the
entire system). The theoretical peak double precision floating
point performance is 36 GFLOP/S for each CPU.

Our CPU versions are parallelized using OpenMP [4] and
Intel Cilk++ [5], respectively. The critical computing intensive
paths are parallelized by multiple threads first then further
vectorized by the compiler utilizing the SSE units per core.
Specifically, in order to achieve better scalability on all eight
cores of both CPUs, we manually optimized our OpenMP
and Cilk++ codes for better data locality control and further
applied numactl to bind threads to physical CPU cores to
avoid the NUMA penalty. Such an optimization significantly
improves the overall performance on two CPUs for up to 60%.

III. PERFORMANCE COMPARISON

In this section, we first compare the performance of the
vector-based implementation on FPGA, GPU and micropro-
cessor. In order to demonstrate the complete potential of dou-
ble precision floating-point performance on GPU, we compare
it with both single-processor (8 threads) and dual-processor

4 0 8 0 1 2 0 1 6 0 2 0 0 2 4 0 2 8 0 3 2 0 3 6 0 4 0 0 4 4 0 4 8 0
0 . 00 . 20 . 40 . 60 . 81 . 01 . 21 . 41 . 61 . 82 . 02 . 22 . 42 . 62 . 8

Co
mp

uta
tio

n T
im

e (
s)

M a t r i x R a n k

 V i r t e x 4 L X 2 0 0
 N e h a l e m (S e q u e n t i a l)
 T e s l a C 1 0 6 0
 N e h a l e m (C i l k + + , 8 t h r e a d s)
 N e h a l e m (O p e n M P , 8 t h r e a d s)
 G T X 4 8 0

(a) Computation time

4 0 8 0 1 2 0 1 6 0 2 0 0 2 4 0 2 8 0 3 2 0 3 6 0 4 0 0 4 4 0 4 8 0
0 . 00 . 40 . 81 . 21 . 62 . 02 . 42 . 83 . 23 . 64 . 04 . 44 . 85 . 25 . 6

Sp
ee

du
p

M a t r i x R a n k

 G T X 4 8 0
 N e h a l e m (O p e n M P , 8 t h r e a d s)
 N e h a l e m (C i l k + + , 8 t h r e a d s)
 T e s l a C 1 0 6 0
 N e h a l e m (S e q u e n t i a l)
 V i r t e x 4 L X 2 0 0

(b) Speedup against sequential implementation on Nehalem

Fig. 2. Performance comparison of the vector-based Hessenberg reduction

(16 threads) x86 implementations and test the rank of the
matrix up to 4,096×4,096.

A. Vector-based Hessenberg Reduction
The vector-based Hessenberg reduction has been realized in

6 different implementations as follows.
• The FPGA implementation;
• The Tesla C1060 GPU implementation;
• The GTX 480 GPU implementation;
• The parallel software implementation of Cilk++;
• The parallel software implementation of OpenMP;
• The sequential software implementation on Xeon E5520.
The comparison among these 6 implementations is illus-

trated in Fig. 2. It can be found that the FPGA implementation
is outperformed by other two technologies at almost all cases.
The inferior performance of FPGA is mainly due to three fac-
tors. (i) The FPGA device is running at a very low frequency,
i.e., 100 MHz. (ii) The direct implementation of Alg. 1 is
a sequential process due to the data dependency. Although
we have tried to parallelize the hardware implementation to
the extreme, its performance is easily surpassed by modern
multicore processors with improved design on cache and SSE
when dealing with sequential applications such as Hessenberg
reduction. (iii) The 5 local memory banks on the current
platform become the limiting factor to increase the parallelism
in the hardware implementation. More memory banks are
desired to achieve higher parallelism on FPGA device.

From Fig. 2, it is evident that it will be beneficial to im-
plement the application on GPU as the matrix rank increases.

5 1 2 1 0 2 4 1 5 3 6 2 0 4 8 2 5 6 0 3 0 7 2 3 5 8 4 4 0 9 6
0

4 0
8 0

1 2 0
1 6 0
2 0 0
2 4 0
2 8 0
3 2 0
3 6 0
4 0 0
4 4 0
4 8 0
5 2 0

Co
mp

uta
tio

n T
im

e (
s)

M a t r i x R a n k

 N e h a l e m (S e q u e n t i a l)
 N e h a l e m (C l i k + + , 8 t h r e a d s)
 N e h a l e m (O p e n M P , 8 t h r e a d s)
 N e h a l e m (C i l k + + , 1 6 t h r e a d s)
 N e h a l e m (O p e n M P , 1 6 t h r e a d s)
 T e s l a C 1 0 6 0
 G T X 4 8 0

Fig. 3. Performance scalability of vector-based implementations

The Tesla implementation surpasses the sequential software
implementation at rank 260 and then approaches the parallel
software implementation afterwards. Fermi consistently out-
performs GT200 for approximately 4×. Clearly the GT200
performance is limited by the lack of DP capability, as shown
in Table I.

B. Performance Scalability

In the previous test, we limit the matrix rank at 480 because
it is the biggest size the FPGA design can accommodate. In
the meantime, it is clearly demonstrated that GPUs are capable
of outperforming multicore CPUs as the matrix rank increases.
In order to completely show the performance potential of
GPUs, we compare them with 8-thread and 16-thread x86
implementations on the platform (shown on Fig. 1) with the
matrix rank up to 4,096. By observing Fig. 3, the GT200
performance is generally close to or slightly better than the
dual socket Nehalem (16-thread case). The GTX 480 GPU
outperforms all other versions consistently with a big margin,
clearly demonstrating the advantage of the newly designed
Fermi architecture on DP performance.

IV. CONCLUSION

In this work, we use a Hessenberg reduction application on
FPGA and GPU to demonstrate their capabilities of double
precision floating-point performance by comparing with paral-
lel implementations on modern x86 microprocessors. Although
the FPGA is outperformed by microprocessor, higher fre-
quency and more local memory banks provide the opportunity
for the FPGA device to regain the advantages. On the other
hand, GPU has clearly established its advantages by bringing
abundant double precision floating-point units into the device
and enjoying high bandwidth with global shared on-board
memory.

REFERENCES

[1] J. G. F. Francis, “The QR transformation, I,” The Computer Journal,
vol. 4, no. 3, pp. 265–271, 1961.

[2] M. Huang and O. Kilic, “Reaping the processing potential of FPGA
on double-precision floating-point operations: an eigenvalue solver case
study,” in Proc. the 18th Annual International IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2010), May 2010,
pp. 95–102.

[3] Nvidia CUDA Programming Guide 2.3.1, Nvidia Corporation, Aug. 2009.
[4] http://openmp.org.
[5] Intel Cilk++ Software Development Kit, Intel Corporation, Feb. 2010.

