Accelerating HPC

(Nash) Dr. Avinash Palaniswamy
High Performance Computing
Data Center Group Marketing
SAAHPC, Knoxville, July 13, 2010
Legal Disclaimer

- Intel may make changes to specifications and product descriptions at any time, without notice.
- Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations.
- Intel does not control or audit the design or implementation of third party benchmarks or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites or others where similar performance benchmarks are reported and confirm whether the referenced benchmarks are accurate and reflect performance of systems available for purchase.
- Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See www.intel.com/products/processor_number for details.
- Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.
- Intel Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and applications enabled for virtualization technology. Functionality, performance or other virtualization technology benefits will vary depending on hardware and software configurations. Virtualization technology-enabled BIOS and VMM applications are currently in development.
- 64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more information.
- Intel, Intel Xeon, Intel Core microarchitecture, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
- Copyright© 2010 Intel Corporation
Agenda

• Accelerating HPC
• Intel® QuickAssist Technology Update
• Intel® MIC Architecture
• Summary
Still an Insatiable Need for Computing

- 1 ZFlops
- 100 EFlops
- 10 EFlops
- 1 EFlop
- 100 PFlops
- 10 PFlops
- 1 PFlop
- 10 TFlops
- 1 TFlop
- 100 GFlops
- 10 Gflops
- 1 GFlop
- 100 MFlops

- Climate Simulation
- Genomics Research
- Medical Imaging

Source: www.top500.org
What are we doing to accelerate HPC applications?

• Intel Xeon® Processors and Intel® MIC Architecture.
• Support Open Attach for Application Accelerators – PCIe Gen 2 today, and PCIe Gen 3 in the future.
• Enabling FSB & QPI-FPGA cache coherent heterogeneous systems.
• Intel QuickAssist Technology Initiative.
• OpenCL Standards efforts.
In-socket FPGA Accelerators

Intel® QuickAssist Technology

- Multiple accelerator and attach options with software and ecosystem support
- Performance and scalability based on customer needs and priorities

Simplify The Use and Deployment of Accelerators on Intel® Architecture Platforms
Moore’s Law: Alive and Well at Intel

Intel Innovation-Enabled Technology Pipeline is Full
High Performance Micro-Architecture for PetaScale Deployments

Tick

Tock

Tick

Tock

Tick

Tock

Tick

Tock

Tick

Tock

65nm

Core™ Harpertown

45nm

Penryn Nehalem

32nm

Westmere Sandy Bridge

22nm

Ivy Bridge Future

New instructions:

SSSE3 SSE4.1 SSE4.2 AES AVX Future - FMA

Sponsors of Tomorrow:
Intel® Xeon® Processor 5600 Series
Building on Xeon® 5500 Leadership Capabilities

Higher Frequency
Greater performance at the same power

New 32nm manufacturing Process
Delivering more into the same package

More Cores/More cache
Up to 6 cores, Up to 12MB Cache. Providing more performance for data intensive workloads

DDR3 Memory
Up to 2 x 1333 MHz DIMMs per channel. Greater performance for bandwidth sensitive applications

PCI Express® 2.0
IC 10/10R
Intel® 82599 10GbE Controller

Up to 60% More Performance¹
Better Energy Efficiency
New Security Features

New lower power CPU SKU options for Xeon® 5600

1 Source: Internal Intel measurements for Xeon® X5680 vs. Xeon® X5570 on BlackScholes*. See backup for system configurations.
Intel® Xeon® Processor 7500 Series

Super Node Scalability for HPC

Technology Advantages

- Nehalem architecture
- 8-cores
- 24MB Shared L3 Cache
- 64 DIMM slots support up to 1 terabyte of memory (4 sockets)
- 72 PCIe Gen2 lanes
- Scaling from 2-256 sockets
- Intel Virtualization Technologies
- Mission Critical Class Reliability features

Increased Resources
Larger More Complex Problems
Scalable Performance
From Research to Realization.

Intel® Many Integrated Core Architecture

The Newest Addition to the Intel Server Family. Industry's First General Purpose Many Core Architecture
Intel® MIC Architecture: An Intel Co-Processor Architecture

Many cores and many, many more threads
Standard IA programming and memory model
Knights Ferry

- Software development platform
- Growing availability through 2010
- 32 cores, 1.2 GHz
- 128 threads at 4 threads / core
- 8MB shared coherent cache
- 1-2GB GDDR5
- Bundled with Intel HPC tools

Software development platform for Intel® MIC architecture
The Knights Family

Knights Corner
1st Intel® MIC product
22nm process
>50 Intel Architecture cores

Knights Ferry
Intel® MIC Architecture Programming

Single Source

Common with Intel® Xeon®
• Languages
• C, C++, Fortran compilers
• Intel developer tools and libraries
• Coding and optimization techniques
• Ecosystem support

Eliminates Need for Dual Programming Architecture

Intel® MIC architecture co-processor

Intel® Xeon® processor

Intel® Xeon® processor family

Compilers and Runtimes
IA Programming Flexibility

Programming choices and standards for range of parallel efficiency

Serial Code Node Level
- Fast Scalar performance
- Optimized C/C++, FORTRAN
- Threading and Performance Libraries
- Debug / Analysis Tools

Parallel Node Level
- Multi-core, Multi-socket
- SSE and AVX instructions
- OpenMP
- Threading Building Blocks
- Performance Libraries
- Thread Checker, Cilk

Multi-Node / Cluster Level
- Cluster Tools
- MPI Checker
Summary

• **Scale Performance Forward**
 Optimize your software for multi-core to benefit now,
 - Intel® Xeon® 5600 and Intel® Xeon 7500 today
 - Future Ready for Intel® Xeon® Processors + Intel® MIC Architecture

• Continue to innovate on Intel® Platforms for those applications that may benefit from accelerators.
Performance Claim Backup

- Up to 1.6x performance compared to Xeon 5500 series claim supported by a CPU intensive benchmark (Blackscholes). Intel internal measurement. (Feb 25, 2010)
 - Configuration details: - Blackscholes*
 - Baseline Configuration and Score on Benchmark: Intel pre-production system with two Intel® Xeon® processor X5570 (2.93 GHz, 8 MB last level cache, 6.4 GT/sec QPI), 24GB memory (6x4GB DDR3-1333), 4 x 150GB 10K RPM SATA RAID0 for scratch, Red Hat* EL 5 Update 4 64-bit OS. Source: Intel internal testing as of February 2010. SunGard v3.0 source code compiled with Intel v11.0 compiler. Elapsed time to run benchmark: 18.74 seconds.
 - New Configuration and Score on Benchmark: Intel pre-production system with two Intel® Xeon® processor X5680 (3.33 GHz, 12 MB last level cache, 6.4 GT/sec QPI), 24GB memory (6x4GB DDR3-1333), 4 x 150GB 10K RPM SATA RAID0 for scratch, Red Hat* EL 5 Update 4 64-bit OS. Source: Intel internal testing as of February 2010. SunGard v3.0 source code compiled with Intel v11.0 compiler. Elapsed time to run benchmark: 11.51 seconds.

- Up to 40% higher performance/watt compared to Intel® Xeon® Processor 5500 Series claim supported by performance results on a server side java benchmark in conjunction with power consumption across a load line. Intel internal measurement (Jan 15, 2010)
 - Baseline platform: Intel preproduction server platform with two Quad-Core Intel® Xeon® processor X5570, 2.93 GHz, 8MB L3 cache, 6.4QPI, 8GB memory (4x2GB DDR3-1333), 1 PSU, Microsoft Windows Server 2008 Enterprise SP2. Intel internal measurement as of January 15, 2010.
 - New platform: Intel preproduction server platform with two six-Core Intel® Xeon® processor X5670, 2.93 GHz, 12MB L3 cache, 6.4QPI, 8GB memory (4x2GB DDR3-1333), 1 PSU, Microsoft Windows Server 2008 Enterprise SP2. Intel internal measurement as of January 15, 2010.

- Intel® Xeon® processor 5600 series with Intel microarchitecture Nehalem delivers similar performance as previous-generation servers but uses up to 30 percent less power
 - Baseline Configuration and Score on Benchmark: Fujitsu PRIMERGY RX300 S5 system with two Intel® Xeon® processor sX5570 (2.93 GHz, 8MB L3, 6.4 GT/s, Quad-core, 95W TDP), BIOS rev. R1.09, Turbo Enabled, HT Enabled, NUMA Enabled, 5 x Fans, 24 GB (6x4GB DDR3-1333 DR registered ECC), 1 x Fujitsu MBD2147RC 147GB 10K RPM 2.5” SAS HDD, 1x800W PSU, SLES 11 (X86_64) Kernel 2.6.27.19-S-default. Source: Fujitsu Performance Lab testing as of Mar 2010. SPECint_rate_base2006 score: 250. http://docs.ts.fujitsu.com/dl.aspx?id=0140b19d-56e3-4b24-a01e-26b8a80cfe53
 - New Configuration and Score on Benchmark: Fujitsu PRIMERGY RX300 S6 system with two Intel® Xeon® processors L5640 (2.26 GHz, 12MB L3, 5.86 GT/s, Hex-core, 60W TDP), BIOS rev R1.00A, Turbo Enabled, HT Enabled, NUMA Enabled, 5 x Fans, 24 GB (6x4GB DDR3-1333 LV DR registered ECC), 1 x Fujitsu MBD2147RC 147GB 10K RPM 2.5” SAS HDD, 1x800W PSU, SLES 11 (X86_64) Kernel 2.6.27.19-S-default. Source: Fujitsu Performance Lab testing as of Mar 2010. SPECint_rate_base2006 score: 250 http://docs.ts.fujitsu.com/dl.aspx?id=4af74e10-24b1-4cf8-bb3b-9c4f5f177389