Is Now the Time for Reconfigurable Computing Standards?

SAAHPC
July 14 2010
Knoxville, TN

Thomas Steinke
Zuse Institute Berlin (ZIB) <www.zib.de>
steinke@zib.de
Acknowledgement

Eric Stahlberg
OpenFPGA Inc. & University Wittenberg

&

the OpenFPGA Community
Outline

- Motivation: future systems requirements

- Status: Reconfigurable Computing (RC)
 - barriers and challenges
 - strategic directions for RC R&D in Europe (FP7 funding)

- Standards:
 - benefits, learning from other communities
 - OpenFPGA standardization activities
My Personal History of Reconfigurable Computing

- **Cray XD1**
 - 6x VIIPro50, RapidArray

- **Nallatech H101**
 - 2x V4LX120, PCI-X

- **SGI Altix450**
 - 2x RC100, 2xV4LX200, NL

- **Mitrionics SDK**
 - v. 0.9 ... v. 2.0.x
Some Observations and Trends

- Resource provider are in strong competition to support science
 - computational & storage requirements
 - power/cooling issues continue to grow

- RC vendors -- changes happen ...
 - Convey entered / SRC, Nallatech, ... continue / Cray, SGI left RC field
 - impact on sustainability from user‘s/developer‘s point of view

- GPGPU gain traction on x86
 - A likely convergence of GPU and CPU elements in future processors?
 - see yesterdays talk by Norm Rubin
Recap: (Some) Attributes of Architecture of the Future

- **scalability** at Exascale level

- **investment and operational costs**
 - reduced cost per solution
 - use of consumer market technologies
 - application performance efficiency \(\rightarrow\) specific targeted solutions
 - adaptive / heterogeneous computing
 - low power + high efficiency
 - embedded and low-power ideas from mobile devices

- **built-in redundancy for fault tolerance**
Example: **Green Flash** feasibility study at LBNL
- application target is climate modeling
- goal to influence HPC design
- design for low power and greater concurrency
- lower clock rates
- simpler cores (Tensilica SoC)
- **tailor design to application**

source: Horst Simon, April 2009
Top Barriers to RC Supercomputing

1. Programming (languages and models, ease of programming)
2. Standards (communications, heterogeneous interconnection, interfaces, portability)
3. Tools
4. Education
5. Costs
6. Development time

source: OpenFPGA survey, November 2009
Additional Barriers to Sustainable RC

- other barriers mentioned in survey
 - Technical
 - memory size and speed
 - bandwidth between FPGA and general-purpose front end
 - high level languages to HDL
 - Non-technical
 - software
 - availability, license costs
 - robust codes for end-users
 - Personnel
 - productivity

source: OpenFPGA survey, November 2009
RC Challenges Associated with Missing Standard

- mainstream RC applications take significant effort to create
- developments not portable across products and time
- industry is fragmented
 - run-time and programming environments: embedded vs. non-embedded
 - businesses: big and focused, small and niche
- alternative technologies in accelerator market
 - low-power processors, GPGPU, multi-core, and combinations
 - better and less expensive tool chains
 - rapidly growing communities
 - standards: OpenCL
Reconfigurable Supercomputing Today

- Are FPGAs dead?
 - Will CPUs solve all problems?
 - Will GPUs fill in the gaps?
 - Will performance continue to matter?

- FPGAs are not dead...
 - parallel processing wall will force code and system redesign
 - applies for GPGPU, FPGA, multi-core
 - data volumes are growing and FPGAs are very efficient at data processing
 - power efficiency is increasingly important
 - FPGAs are growing in capability per unit cost

The door remains open for reconfigurable supercomputing
What’s Ahead for Reconfigurable Computing

Gartner Group Technology Adoption Cycle
RC within EU PRACE Project

- 2009: SRC and Convey are listed as RC platforms of interest

- 03/2010: existing RC prototype for evaluation:
 - HW: MAXWELL FPGA cluster (EPCC)
 - SW: HCE (C-to-HDL/Ylichron)

- 06/2010: the RC prototype was excluded from further benchmarking activities (so far)

source: http://www.prace-project.eu/documents/
EU FP7 Funding Opportunities ICT - Call #7 in 09/2010

- Objectives: ..., Customisation
 - Reconfigurable architectures
 - Tool-chains

- EU strengths:
 - academic (& some industrial) research, coarse-grained RC research
 - embedded systems (as a potential market)

- R&D in Reconfigurable Computing must take account of the market:
 - principal markets:
 - High Performance Computing
 - Embedded Systems
 - fundamental obstacle to take-up (in both) is difficulty of programming
 - highest priority need is for commercially viable programmability

source: P. Tsarchopoulos, ICT Programme Officer, DATE 2010
Benefits of Standards

- increase lifetime of created products
- lower risk of new innovations
- increase confidence of consumers
- encourage interoperability
- enable markets to expand

- several standards exist in the RC hardware design community already
Reaching for Standards

- must build value
 - Business: reduced cost and/or expanded markets
 - Education: foster innovation, research and learning
- must be correctly timed
 - enable, not stifle innovation that is of market value
- must be adoptable
 - low cost to incorporate
- must be adaptable
 - there is no perfect standard

- How to reach standards?
 - Learning from history - Do we need a (RC) crisis?
Learning from GPU Community

- crisis driven: x86 lock speeds were performance needed
- reduce costs of tools to create applications
 - CUDA is available for free
 - free/inexpensive OpenCL compiler
- expansion opportunity: inexpensive devices for development
 - GPUs are cheap to develop with
- shorten time to develop applications
 - short cycle times
 - solutions could be readily used on other compatible devices
- grow the number of reliable applications
 - efforts abound with increasing numbers of enhanced applications and libraries
OpenFPGA & Standards

- recognizing and promoting progress in standards for RC computing internationally
- OpenFPGA is not ‘open source’
 - OpenCores fills this important niche for the market
- OpenFPGA seeks to extend life of intellectual property
 - standards and metadata
- OpenFPGA seeks to translate research advances into broader mainstream use
 - for example, developments in CHREC
- OpenFPGA seeks to ease programmability
 - increased reliability
 - increased reusability
 - better inter-operability
OpenFPGA Working Groups

- **T-HLLANG**
- **T-GENAPI**
- **T-CORELIB**
- **T-APPLIB**

Performance

T-BENCH

Functional Abstractions

Control and Flow Interfaces

Component Reliability and Reuse

FPGA ENABLED SYSTEM
OpenFPGA Activities Towards Standards

- Core interface definition (2007)
- GenAPI (2008)

- OpenFPGA member activities:
 OpenCL (“like”) interface on FPGA platforms, for example...
 → see poster of Craig Steffens (NCSA)
OpenFPGA CoreLib Interoperability Effort (2007-)

1. Investigate emerging standards for IP cores.
2. Select an existing standard if possible → Spirit consortium IP-XACT
3. Investigate existing HLL tools requirements for IP core integration. Integrate a set of examples into each of the tools.
4. Define extensions required to existing standards to meet needs of HLL tools → OpenFPGA IP-XACT extensions
5. Define the core standard and implement it in the tools.
6. Define the library standard.
7. Select and implement example IP core libraries.
OpenFPGA GenAPI (2008)

- API for high-level language access to RC resources in a portable manner
- Design goals:
 - Portability and supportability across a wide range of available RC platforms
 - Similarity to existing common capabilities available within RC platforms
 - Minimal essential functionality to support general application acceleration with RC
- early API defined July 2008 and released for comment
 - available at OpenFPGA website
- comment being received slowly
- awaiting proof case incorporation
Open Discussion (➔ OpenFPGA Meeting)

- What is the future if RC standards are not adopted?
- What will drive RC supercomputing towards standards?
- Decision or challenge about which way to go?
- Who would like standards?
 - If so, what standards?
 - If not, why not?