Solving Sparse Problems on GPUs

Michael Garland
NVIDIA Research
Heterogeneous Parallel Computing

Multicore CPU
Fast Serial Processing

Manycore GPU
Scalable Parallel Processing
GPUs are mainstream
GPUs are power efficient
Nov. 2010 Top 500 List

Performance vs. Power

- **Tianhe-1A**: GPU-CPU Supercomputer
- **Jaguar**: CPU only Supercomputer
- **Nebulae**: GPU-CPU Supercomputer
- **Tsubame**: GPU-CPU Supercomputer
- **LBNL**: CPU only Supercomputer

- **Gigaflops**
- **Megawatts**

- **GPU-CPU Supercomputer**
- **CPU only Supercomputer**
- **Power**
GPUs do science

ASUCA Weather Modeling

Blood Flow Simulations

Himeno: Navier Stokes

3990 Tesla GPUs

4000 Tesla GPUs

1024 Tesla GPUs

76.1 Tflops

600 Tflops

7.9 Tflops

Large-scale GPU simulations on Tsubame

© 2011 NVIDIA Corporation
What about problems that are

- Sparse
- Irregular
- Unstructured
with Duane Merrill, University of Virginia

BREADTH-FIRST SEARCH
Breadth-First Search on Graphs

- Pick a source node.
- Rank every vertex by the length of shortest path from source.
- Or label every vertex by predecessor in this traversal order.
Arbitrary locality of reference

3D 7pt Poisson Lattice

Wikipedia, 2007

Sparsity pattern (adjacency matrix)
BFS Algorithm: Quadratic vs. Linear

Quadratic
- Inspect every vertex at every BFS iteration to see if it was visited during the previous iteration
- $O(|V|^2 + |E|)$ work
- “Stencil-oriented”
 - Trivially matches GPU machine model
- **Unsuitable for diameter $> O(5)$**

Linear
- Each BFS iteration only inspects neighbors of vertices newly-discovered during the last iteration
- $O(|V| + |E|)$ work
- “Allocation-oriented”
 - Considered ill-suited for GPU machine model

3D Poisson Lattice (300³ vertices)
Non-uniform & dynamic workloads

Logical vertex frontier
- The unique vertices discovered during the current iteration

Logical edge frontier
- The neighbors of the previous iteration’s vertex frontier
Substantial dataset variety

- **Wikipedia** (social)
- **3D Poisson grid** (cubic lattice)
- **R-MAT** (random, power-law, small-world)
- **Street map: Europe** (Euclidian space)
- **PDE-constrained optimization** (non-linear KKT)
- **Auto transmission manifold** (tetrahedral mesh)
Implementation issues

- Expose sufficient parallelism
 - globally distribute expansion/contraction in DRAM queue

- Load imbalance between processing elements
 - edge-oriented rather than vertex-oriented algorithm
 - “vectorize” tasks across threads

- Bandwidth inefficiency due to scattered load/store
 - isolate irregular accesses from rest of computation
 - filter lookups with bitmask to better leverage cache
Experimental corpus

<table>
<thead>
<tr>
<th>Graph</th>
<th>Type</th>
<th>Vertices (millions)</th>
<th>Edges (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>europe.osm</td>
<td>Road network</td>
<td>50.9</td>
<td>108.1</td>
</tr>
<tr>
<td>grid5pt.5000</td>
<td>2D Poisson stencil</td>
<td>25.0</td>
<td>125.0</td>
</tr>
<tr>
<td>hugebubbles-00020</td>
<td>2D mesh</td>
<td>21.2</td>
<td>63.6</td>
</tr>
<tr>
<td>grid7pt.300</td>
<td>3D Poisson stencil</td>
<td>27.0</td>
<td>188.5</td>
</tr>
<tr>
<td>nlpkkt160</td>
<td>Constrained optimization problem</td>
<td>8.3</td>
<td>221.2</td>
</tr>
<tr>
<td>audikw1</td>
<td>Finite element matrix</td>
<td>0.9</td>
<td>76.7</td>
</tr>
<tr>
<td>cage15</td>
<td>Transition prob. matrix</td>
<td>5.2</td>
<td>94.0</td>
</tr>
<tr>
<td>kkt_power</td>
<td>Optimization (KKT)</td>
<td>2.1</td>
<td>13.0</td>
</tr>
<tr>
<td>coPapersCiteseer</td>
<td>Citation network</td>
<td>0.4</td>
<td>32.1</td>
</tr>
<tr>
<td>wikipedia-20070206</td>
<td>Wikipedia page links</td>
<td>3.6</td>
<td>45.0</td>
</tr>
<tr>
<td>kron_g500-logn20</td>
<td>Graph500 random graph</td>
<td>1.0</td>
<td>100.7</td>
</tr>
<tr>
<td>random.2Mv.128Me</td>
<td>Uniform random graph</td>
<td>2.0</td>
<td>128.0</td>
</tr>
<tr>
<td>rmat.2Mv.128Me</td>
<td>RMAT random graph</td>
<td>2.0</td>
<td>128.0</td>
</tr>
</tbody>
</table>
Single-socket performance comparison

<table>
<thead>
<tr>
<th>Graph</th>
<th>Spy Plot</th>
<th>Avg. Search Depth</th>
<th>Sequential Intel</th>
<th>Sandybridge†</th>
<th>Parallel NVIDIA Tesla C2050</th>
<th>Parallel Intel Nehalem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>10⁹ TE/s</td>
<td>10⁹ TE/s</td>
<td>Parallel speedup</td>
<td></td>
</tr>
<tr>
<td>Europe.osm</td>
<td></td>
<td>19314</td>
<td>0.03</td>
<td>0.3</td>
<td>11x</td>
<td>0.12 (4-core††)</td>
</tr>
<tr>
<td>grid5pt.5000</td>
<td></td>
<td>7500</td>
<td>0.08</td>
<td>0.6</td>
<td>7.3x</td>
<td>0.47 (4-core††)</td>
</tr>
<tr>
<td>hugebubbles</td>
<td></td>
<td>6151</td>
<td>0.03</td>
<td>0.4</td>
<td>15x</td>
<td>0.23 (4-core††)</td>
</tr>
<tr>
<td>grid7pt.300</td>
<td></td>
<td>679</td>
<td>0.04</td>
<td>1.1</td>
<td>28x</td>
<td>0.11 (4-core††)</td>
</tr>
<tr>
<td>nlpkk160</td>
<td></td>
<td>142</td>
<td>0.26</td>
<td>2.5</td>
<td>10x</td>
<td>0.19 (4-core††)</td>
</tr>
<tr>
<td>audikw1</td>
<td></td>
<td>62</td>
<td>0.65</td>
<td>3.0</td>
<td>4.6x</td>
<td></td>
</tr>
<tr>
<td>cage15</td>
<td></td>
<td>37</td>
<td>0.13</td>
<td>2.2</td>
<td>18x</td>
<td></td>
</tr>
<tr>
<td>kkt_power</td>
<td></td>
<td>37</td>
<td>0.05</td>
<td>1.1</td>
<td>23x</td>
<td></td>
</tr>
<tr>
<td>coPapersCite</td>
<td></td>
<td>26</td>
<td>0.50</td>
<td>3.0</td>
<td>5.9x</td>
<td></td>
</tr>
<tr>
<td>wikipedia-2007</td>
<td></td>
<td>20</td>
<td>0.07</td>
<td>1.6</td>
<td>25x</td>
<td>0.50 (8-core†††)</td>
</tr>
<tr>
<td>kron_g500-logn20</td>
<td></td>
<td>6</td>
<td>0.24</td>
<td>3.1</td>
<td>13x</td>
<td></td>
</tr>
<tr>
<td>random.2Mv.128Me</td>
<td></td>
<td>6</td>
<td>0.10</td>
<td>3.0</td>
<td>29x</td>
<td>0.70 (8-core†††)</td>
</tr>
<tr>
<td>rmat.2Mv.128Me</td>
<td></td>
<td>6</td>
<td>0.15</td>
<td>3.3</td>
<td>22x</td>
<td></td>
</tr>
</tbody>
</table>

† 3.4GHz Core i7 2600K
†† 2.5 GHz Core i7 4-core, Leiserson et al.
††† 2.7 GHz Xeon X5570 8-core, Agarwal et al.
ALGEBRAIC MULTIGRID

Nathan Bell (NVIDIA), Steven Dalton & Luke Olson (UIUC)
Objective

- Solve (certain) sparse linear systems *very quickly*
- Optimal complexity $O(N)$

$$A \times x = b$$
Multigrid in a Nutshell

Setup Phase
- Construct a hierarchy of grids
- Sequence of coarser versions of the problem

Cycling/Solve Phase
- Reduce high-frequency errors with relaxation
- Restrict remaining low-frequency errors to coarse grid
- Interpolate coarse-grid solution back to fine grid

Applied recursively
- Eliminates all error modes
- Results in V-cycle
- Converges to solution in multiple cycles
Algebraic Multigrid (AMG)

- Constructs “grids” directly from sparse matrix
 - Hierarchy of sparse matrices
 - Requires no geometric knowledge

- Aggregation-based AMG
 - Coarsens clusters of nodes
 - Works for unstructured meshes
AMG on the GPU

- Implemented both Setup and Cycling on GPU
 - Need to identify *fine-grained* parallelism everywhere
 - Distill complex algorithms into *parallel primitives*

Setup Phase
- Sparse matrix-matrix multiplication \((C = A \times B)\)
- Sparse matrix transpose
- Matrix format conversions, parallel aggregation, etc.

Cycling Phase
- Sparse matrix-vector multiplication \((y = A \times x)\)
- Level 1 BLAS operations (e.g. dot product)
Example: Transpose

- Matrix in coordinate format (COO)
- Sort rows and values by column index
- Implemented with `thrust::sort_by_key`

<table>
<thead>
<tr>
<th>Row indices</th>
<th>Column indices</th>
<th>Nonzero values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 2 4 5</td>
<td>0 1 0 2 0 1</td>
<td>A B C D E F</td>
</tr>
</tbody>
</table>

© 2011 NVIDIA Corporation
Example: Aggregation

- Compute MIS(2) in parallel with extension of Luby’s method
- Create aggregates around each MIS(2) node
- Close analog of standard greedy aggregation scheme
Performance Study

- Eight matrix example
 - Isotropic Poisson Problems
 - Structured and Unstructured

- GPU System
 - Tesla C2050 GPU
 - CUDA 4.0
 - Thrust v1.4
 - Cusp v0.2

- CPU System
 - Intel Core i7 950 CPU
 - MKL v10.3

- Reference Solver
 - Trilinos/ML v5.0

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Notes</th>
<th>Rows</th>
<th>Nonzeros</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>2D FD, 5-point</td>
<td>~1M</td>
<td>~5M</td>
</tr>
<tr>
<td>1b</td>
<td>2D FE, 9-point</td>
<td>~1M</td>
<td>~9M</td>
</tr>
<tr>
<td>2a</td>
<td>3D FD, 7-point</td>
<td>~1M</td>
<td>~7M</td>
</tr>
<tr>
<td>2b</td>
<td>3D FE, 27-point</td>
<td>~1M</td>
<td>~27M</td>
</tr>
<tr>
<td>3a</td>
<td>2D FE, h=0.03</td>
<td>~500K</td>
<td>~4M</td>
</tr>
<tr>
<td>3b</td>
<td>2D FE, h=0.02</td>
<td>~1M</td>
<td>~8M</td>
</tr>
<tr>
<td>3c</td>
<td>2D FE, h=0.015</td>
<td>~2M</td>
<td>~15M</td>
</tr>
<tr>
<td>4</td>
<td>3D FE, h=0.15</td>
<td>~1M</td>
<td>~17M</td>
</tr>
</tbody>
</table>
Individual Components

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dot Product</td>
<td>6.62x</td>
</tr>
<tr>
<td>Vector Addition</td>
<td>6.35x</td>
</tr>
<tr>
<td>Sparse Transpose*</td>
<td>2.90x</td>
</tr>
<tr>
<td>Sparse Matrix-Vector Multiply*</td>
<td>6.00x</td>
</tr>
<tr>
<td>Sparse Matrix-Matrix Multiply*</td>
<td>1.67x</td>
</tr>
</tbody>
</table>

Average speedup across eight example matrices
Setup Phase

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Type</th>
<th>CPU</th>
<th>GPU</th>
<th>Speedup</th>
<th>Trilinos/ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>2D FD</td>
<td>892 ms</td>
<td>518 ms</td>
<td>1.72x</td>
<td>2040 ms</td>
</tr>
<tr>
<td>1b</td>
<td>2D FE</td>
<td>1133 ms</td>
<td>649 ms</td>
<td>1.75x</td>
<td>2298 ms</td>
</tr>
<tr>
<td>2a</td>
<td>3D FD</td>
<td>1639 ms</td>
<td>944 ms</td>
<td>1.74x</td>
<td>2906 ms</td>
</tr>
<tr>
<td>2b</td>
<td>3D FE</td>
<td>2845 ms</td>
<td>2124 ms</td>
<td>1.34x</td>
<td>4420 ms</td>
</tr>
<tr>
<td>3a</td>
<td>2D FE</td>
<td>657 ms</td>
<td>335 ms</td>
<td>1.96x</td>
<td>1324 ms</td>
</tr>
<tr>
<td>3b</td>
<td>2D FE</td>
<td>1484 ms</td>
<td>648 ms</td>
<td>2.29x</td>
<td>2785 ms</td>
</tr>
<tr>
<td>3c</td>
<td>2D FE</td>
<td>2901 ms</td>
<td>1151 ms</td>
<td>2.52x</td>
<td>5236 ms</td>
</tr>
<tr>
<td>4</td>
<td>3D FE</td>
<td>3157 ms</td>
<td>1726 ms</td>
<td>1.83x</td>
<td>4967 ms</td>
</tr>
</tbody>
</table>
Cycling Phase

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Type</th>
<th>CPU</th>
<th>GPU</th>
<th>Speedup</th>
<th>Trilinos/ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>2D FD</td>
<td>1221 ms (20)</td>
<td>423 ms (51)</td>
<td>7.66x</td>
<td>14,190 ms (33)</td>
</tr>
<tr>
<td>1b</td>
<td>2D FE</td>
<td>1097 ms (16)</td>
<td>461 ms (46)</td>
<td>7.52x</td>
<td>10,590 ms (22)</td>
</tr>
<tr>
<td>2a</td>
<td>3D FD</td>
<td>1760 ms (23)</td>
<td>295 ms (27)</td>
<td>6.76x</td>
<td>14,800 ms (31)</td>
</tr>
<tr>
<td>2b</td>
<td>3D FE</td>
<td>1683 ms (14)</td>
<td>482 ms (24)</td>
<td>5.98x</td>
<td>13,840 ms (20)</td>
</tr>
<tr>
<td>3a</td>
<td>2D FE</td>
<td>1534 ms (42)</td>
<td>286 ms (49)</td>
<td>5.40x</td>
<td>14,020 ms (53)</td>
</tr>
<tr>
<td>3b</td>
<td>2D FE</td>
<td>3704 ms (47)</td>
<td>633 ms (54)</td>
<td>5.77x</td>
<td>34,410 ms (68)</td>
</tr>
<tr>
<td>3c</td>
<td>2D FE</td>
<td>7804 ms (53)</td>
<td>1424 ms (65)</td>
<td>5.75x</td>
<td>44,530 ms (65)</td>
</tr>
<tr>
<td>4</td>
<td>3D FE</td>
<td>4369 ms (43)</td>
<td>1498 ms (50)</td>
<td>2.96x</td>
<td>28,380 ms (47)</td>
</tr>
</tbody>
</table>

Notes
- Time to solve $Ax=b$ to $1e-10$ relative tolerance
- AMG as a preconditioner to CG solver
- Iteration counts shown in parentheses
- Reporting per-iteration speedup
Summary

Fully-Parallelized AMG on GPU

- 1.89x Speedup in Setup Phase (average)
- 5.89x Speedup in Cycling Phase (average)

References

"Exposing Fine-Grained Parallelism in Algebraic Multigrid Methods"
Nathan Bell (NVIDIA), Steven Dalton (UIUC), Luke Olson (UIUC),
http://research.nvidia.com/publications

Cusp Library
http://cusp-library.googlecode.com

Thrust Library
http://thrust.googlecode.com
Final Thoughts

- Sparse problems can be solved by
 - exposing sufficient fine-grained parallelism
 - managing load imbalance
 - efficiently using available bandwidth

- Details available in:
 - technical reports
 - open source implementations
 - see http://research.nvidia.com
Questions?

mgarland@nvidia.com

http://research.nvidia.com