
Supported by

Nicholas Moore and Miriam Leeser
Dept. of Electrical and Computer Engineering

Northeastern University
Boston, MA

Laurie Smith King
Dept. of Mathematics and Computer Science

College of the Holy Cross
Worcester, MA

Adaptable Two-Dimension Sliding
Windows on NVIDIA GPUs with

Runtime Compilation

Supported by

2

Motivation

● GPUs offer significant performance potential
● GPU development is difficult

● Complicated target with changes over time

● Leads to problem-specific non-reusable code
● Affects library developers and users

● Goal: more adaptable kernel implementations
● Case study: template matching application
● Technique: problem-specific kernel compilation

3

Template Matching (1)

● Real-world tumor
tracking application
● Ying Cui, Jennifer Dy,

Gregory Sharp, Brian
Alexander, and Steve
Jiang

● Visual tracking of tumor
● Focused radiotherapy
● Tumor moves during

breathing

Y. Cui, J. G. Dy, G. C. Sharp, B. Alexander, and S. B. Jiang, "Multiple Template Based Fluoroscopic Tracking of
Lung Tumor Mass without Implanted Fiducial Markers," Physics in Medicine and Biology, Vol. 52, pp. 6229-
6242, 2007.

4

Template Matching (2)

Voting

Template 1

Template 2

Template N

Incoming Frame

S1, L1

S2, L2

SN, LN

Matching Location

5

corr2()

● Sliding window template matching
● Pearson's correlation for similarity score
● Floating-point data

● Templates and frames pre-processed

corr2(A , B)=

∑
M
∑
N

(AMN− Ā)(BMN− B̄)

√(∑
M
∑
N

(AMN− Ā)2)(∑
M
∑
N

(BMN−B̄)2)

6

● Template data (A)
● Not expected to be separable
● Fixed for given template

Computation Reduction

corr2(A , B)=

∑
M
∑
N

(AMN− Ā)(BMN−B̄)

√(∑
M
∑
N

(AMN− Ā)2)(∑
M
∑
N

(BMN−B̄)2)

7

Computation Reduction

● Template data (A)
● Not expected to be separable
● Fixed for given template

corr2(A , B)=

∑
M
∑
N

AMN
C

(BMN−B̄)

√A
D∑

M
∑
N

(BMN−B̄)
2

8

Computation Reduction

● ROI data (B)
● Dependent on window location and frame
● Subtraction complicates frequency domain

corr2(A , B)=

∑
M
∑
N

AMN
C

(BMN−B̄)

√A
D∑

M
∑
N

(BMN−B̄)2

9

Reference Data Sets

Patient Templates Template Size
(pixels)

Shift ±V/±H
(pixels)

1 12 53×54 18/9

2 13 23×21 11/5

3 10 76×45 9/4

4 11 156×116 9/3

5 12 86×78 11/6

6 14 141×107 9/2

● Large templates
● Significant variation in dimensions

● Small search with single ROI per frame
● Different part of the problem space

10

Convolution Implementations

● Kong et al. (GPGPU 2010)
● Template stored in shared memory
● Only 7×7 kernels presented

● NVIDIA Performance Primitives
● Only supports uint8

● Accelereyes Jacket
● Last documented version supports arbitrary kernels up to 5×5,

square kernels to 10×10

● OpenCV
● Supports single precision floating point
● Non-separable templates stored in constant memory.

11

CUDA Mapping Complications

● Common correlation case:
● Small template
● Large image with many window locations

● Template matching application:
● Templates too large to use shared or constant memory
● Few sources of parallelism

– Few templates (10 to 14)
– Relatively small ROI (95 to 703 positions)
– Single ROI per frame

● Problem parameters vary between patients

12

CUDA Mapping Solution

● Tiling of the template
● Reduces local working set size
● More independent parallelism

● Problem-specific kernel compilation
● Adaptability without performance impact

13

CUDA Implementation

● Multiple pass implementation
● Average, denominator, and numerator similar

● Outer loops are all addition

corr2(A , B)=

∑
M
∑
N

AMN
C

(BMN−B̄)

√A
D∑

M
∑
N

(BMN−B̄)2

14

Tiled Template (1)

● Tile and process sub-
templates separately
● More parallelism
● Reduces working set

size to fit in shared
memory

● Tiles mapped across
CUDA grid
● Scales to arbitrary

template sizes

Main Tiles Right
Tiles

Bottom Tiles
Corner
Tile

15

Tiled Template (2)

● Efficient tile size may
not match problem

● Corr2() complicates
padding

● Varying template size
per block

Main Tiles Right
Tiles

Bottom Tiles
Corner
Tile

16

Experimental Setup

● Benchmarked tile sizes from 4×4 to 16×16
● Compared against

● MATLAB and pthreads-based C application
● Both used constant template optimization

● Benchmarking
● Intel Xeon W3580 (4 Nehalem cores @ 3.33 GHz,

6MB L2)
● NVIDIA GeForce GTX 480 (Fermi) with CUDA 3.2
● 64-bit Linux (GCC 4.4.3) and MATLAB R2010a

17

Performance

● Good performance across
patients

● Steady-state streaming
● Includes data transfer

GPU vs CPU:
Patient 1 2 3 4 5 6

Template Size 53×54 23×21 76×45 156×116 86×78 141×107

Best Tile Size 16×2 4×4 8×8 16×10 8×8 16×10

Total Speedup 7.80 1.57 8.48 12.67 12.50 14.78

18

Tile Size Selection (1)

● Trade-off between efficiency and parallelism
● Limited execution hardware

● Patient 2
● Small tiles for more parallelism

Patient 1 2 3 4 5 6

Template Size 53×54 23×21 76×45 156×116 86×78 141×107

Best Tile Size 16×2 4×4 8×8 16×10 8×8 16×10

Total Speedup 7.80 1.57 8.48 12.67 12.50 14.78

19

Tile Size Selection (2)

● Trade-off between efficiency and parallelism
● Limited execution hardware

● Patient 4
● 4×4 tiles results in no edge cases
● Larger 16×10 tiles generates enough parallelism

– 16×6, 12×16, and 12×6 edge tiles

Patient 1 2 3 4 5 6

Template Size 53×54 23×21 76×45 156×116 86×78 141×107

Best Tile Size 16×2 4×4 8×8 16×10 8×8 16×10

Total Speedup 7.80 1.57 8.48 12.67 12.50 14.78

20

CUDA Adaptability

● Adaptability may affect performance
● Compile-time optimizations not-possible

– Loop unrolling
– Strength reduction (esp. % or /)

● Increased resource usage

● Mitigate issues with problem-specific kernel
compilation

21

Problem-Specific Kernel
Compilation (PSKC)

● No C-level source compilation in CUDA API
● Productivity and portability vs. PTX

● Framework for runtime compilation
● Part of larger set of GPU host-code abstractions
● Automates compilation and loading of modules

● nvcc called at runtime
● Kernels written in terms of unspecified compile-time constants
● -D flag used to set parameters

● Overhead acceptable: one time setup, then streaming

22

PSKC: Current Benefits

● Loop unrolling for all tile regions
● Instantiation of separate computation loops with

C++ templates

● Strength reduction
● Bit-wise offset calculations
● Instance & implementation parameter values

inlined

● Register usage reduction

23

Conclusions

● Tiled implementation allows for processing of large templates
● Better usage of fast memories
● Better performance through better parallelism

● Problem-specific kernel compilation supports adaptability at
runtime
● Loop unrolling, strength reduction, efficient register usage

● Future work: ability to adapt to both problem and hardware
● Problem and implementation parameterization

– Applications: particle image velocimetry

– Different GPUs

● PSKC: quantify benefits and explore limits

24

Supported by

Thank You

Nicholas Moore: nmoore@coe.neu.edu

Miriam Leeser: mel@coe.neu.edu

mailto:nmoore@coe.neu.edu
mailto:mel@coe.neu.edu

25

Performance Breakdown

	Title Slide
	Motivation
	Template Matching (1)
	Template Matching (2)
	corr2()
	Computation Reduction
	Computation Reduction (2)
	Computation Reduction (3)
	Reference Data Sets
	Convolution Implementations
	CUDA Mapping Complications
	CUDA Mapping Solution
	CUDA Implementation
	Tiled Template (1)
	Tiled Template (2)
	Experimental Setup
	Performance
	Tile Size Selection (1)
	Tiles Size Selection (2)
	CUDA Adaptability
	Problem-Specific Kernel Compilation
	PSKC: Current Benefits
	Conclusions
	Thank You
	Performance Breakdown

