CENTER FOR HYBRID MULTICORE PRODUCTIVITY RESEARCH

Accelerating a climate physics
model with OpenCL

Fahad Zafar, Dibyajyoti Ghosh, Lawrence Sebald, Shujia Zhou

ﬂ’MBI: University of Maryland
3% Baltimore County

Introduction

* The demand to increase forecast
predictability has been pushing climate and
weather models
° increase model grid resolution
° include more physical processes.

e Current trends in the computing industry
have moved from optimizing performance
gains on single-core processors to increasing

the overall performance through parallel
computing with many-core processors.

OpenCL

* Open Computing Language (OpenCL) is
fast becoming the standard for
heterogeneous parallel computing

e Run on CPUs, GPUs, and other
accelerator architectures (Cell, Fusion)

* OpenCL puts forward a thread-extensive
model for programming

Contributions and Focus

* A complete cross-platform real-world
example in OpenCL

Evaluate cross-platform performance and
portability

 Compare C compilers and execution
environments (IBM, Mac OS X)

 Highlight the performance gain achieved
by OpenCL CPU implementation over
traditional C code on CPUs.

GEOS-5 Climate Model

&Y —+ Compute !!!

* The NASA Goddard Earth Observing System
Model,Version 5 (GEOS-5), is a currently
operational climate model.

 SOLAR is a solar radiation model component
[Chou et al. 99] used in GEQOS-5 and other climate
and weather models.

[Chou et al 99] M. D. Chou and M.]. Suarez, “A solar radiation parameterization (clir-ad-sw) for atmospheric studies,” 1 999.

SOLAR

e A production-quality climate or weather model code can span up to a few
hundred thousand lines.

> Originally written in FORTRAN

e This particular code was converted to C and ported to the IBM Cell
Broadband Engine by [Zhou et al] where detailed code structure analysis
and performance gains were reported.

o ~20% for SOLAR AND IRRAD, the remaining computing time breaks
down as

o ~25% for dynamics
o ~25% for input and output data
o ~30% for other column-physics components.

* We implemented the serial version of the C code in OpenCL version 1.0

Platforms: IBM JS21 (PowerPC) and |S22 (Power6) blades,a POWERS6 AlX system, and Mac OS
X versions 10.6.4 and 10.6.7 with x86 Intel processors.

[Zhou et al] S. Zhou, D. Duffy, T. Clune, M. Suarez, S.Williams, and M. Halem, “The impact of IBM Cell technology on the programming
Paradigm in the context of computer systems for climate and weather models,” pp. 2176—2 186, 2009.

Code Overview

Solar Radiation Initial ()

(Setting up data and arrays)

Solar UV ()

. GetAerolndex

. Cldscale

. Deledd

. Cldflxv

) Cldflx
Solar IR ()

) GetAerolndex

. Cldscale

. Deledd
. Cldflxv
) Cldflx

Solar Radiation Final ()

(Finalizing data and output)

Approach

* Extract compute-intensive kernels

without changing the overall code
structure

* Manually optimized sections of the code
to run in a multi-threaded fashion using
OpenCL kernels and benchmark them.

e Run in 2 Modes

> Cross-checking with serial execution
> Benchmark

Approach

 Compare OpenCL vs. serial GCC
> |IBM (complete)
> Mac OS X (incomplete)

* Compare auto-vectorization with other
compilers for select sections of the code

CPU Experiment Setup

Operating System Compiler
IBM |S 21 blade e GCC v4.1.2
IBM |S 22 blade e GCC v4.1.2
IBM POWERG6 AIX e GCC v4.1.2
* IBM XLC vI0.1

Intel 2.66 GHz Core 2 Duo « GCC v4.2.1
Mac OS X 10.6.7 * Intel C++ Compiler v12.0.4

Code Execution and Checking

* Parallel code runs side by side

Cross-check Compute Device values after every
kernel

Code Sample: | ,

execute sectionl(df.cnt.=o2):

s
s SECTICON - J
s

for (k=0; k<LH: k++)
for (i=0;i<M_BLOCK: i++)
{
=02[1][k+1] = =02[1i][k] + =scallil[k+1l]*cnt[i];

s
=02[k+1][1] = =02[k][1i] + scal[k+1][1] =*cnt[i]

<% LLT increased paramseter 145 to 155 to enhance effect 7
i df[1][k+2] = 0.0633%{1.0 — exp(-0.000155%=sgrt{=o2[1][k+1]))):
df [k+2][1] = 0.0633%(1.0 — exp(—0.000155%=grt (so2[k+1]1[1i])3):

}

execute _sectiond (=o02.df):

c————— for =olar heating due to co? =caling follows Eg(3.5) with f=1.
=] unit is (cm—atm)stp. 789 = (1000-980)%(44.-28 97)=(22400-44)

s
I SECTION - K
yes
for (i=0; i<M_BLOCK: i++)
{

o =o2[1][0] = (789 *®col)j*=scalli][0]:;
=02[0][1] = (789 *co?)#®=cal[0][1];

execute sectionk({=o2.=scal):

Manual Optimization

2000

e Porting C code to OpenCL provides
a design decision challenge based on
the nested dependency structure of
the code.

4000

3000

Time (microseconds)

2000

e Dividing one subroutine with multiple
levels of iteration loops and a mix of :
decision statements can be tricky at
times.

1-Kernel 4-Kernel

* We noticed that splitting some
subroutines into multiple kernels at
times speed up the processing, while
in some cases it reduced
performance.

Findings

» Auto vectorization support in OpenCL compiler
> better than GCC, IBM XLC, Intel ICC

* We found a 3 ~ 4X performance improvement

per core over the original serial code compiled
with GCC

* OpenCL provides access to a multi-threaded
programming and execution model as well as a
low-level APl for memory and thread
management

Findings

e Similar results were obtained from Intel
|CC compiler and IBM XLC compiler for
these nested loop constructs

» Efficient vectorization and global
optimizations contribute to drastic
speedup in OpenCL

OpenCL Parallel vs. IBM Serial

* Code implementation complete
 Tested and cross checked
e About 70 compute kernels

e The kernels do not have a one-to-one
mapping with the serial solar radiation
code functions.

* The code uses integer and floating point
data types

Results: Speedup per core

Speedup (per core)

4.5

3.5

IBM JS21 (4 cores)

B BM JS21 (4 cores)
EI1BM JS22 (8 cores)

IBM JS22 (8 cores)

University of Maryland Baltimore County

Results: Performance gain per
section

7

u
1

I
1

M |BM JS21 (Parallel)
M |BM JS21 (Serial)
HBM JS22 (Parallel)
M |BM JS22 (Serial)

w
1

log,,(time) in microseconds
]

Solar Radiation SolarUV () SolarlIR() Solar Radiation
Initial() final()

University of Maryland Baltimore County

OpenCL Parallel vs. Mac OS X
Serial

* Code Implementation Incomplete

> First two sections tested and running

* Performance is portable to some extent

B Mac (Serial)

B Mac (Parallel)

log,,(time) in microseco

Portability Issues

e The code implemented with OpenCL 1.0
compiled correctly and executed
accurately with cross-checked values in

IBM JS21 and JS22 blades did not run on
Mac OS X" as is”.

* Thread scheduling identified as an issue.

¢ Platform detection functions would crash
for one platform while ran correctly for
the other.

Vectorization test

* IBM

o Implement a subset of the code using Altivec
Instruction set.

> Speedup = 2x

e |Intel

> Use Intel OpenCL viewer to look at the
assembly code

Vectorization Analysis - |

A part of the serial code with GCC vectorization error output

socad stub fostcB6E: rote. == wedt_analyze loop form ==

S0°ad SID. NOAlS=62- role: nol vecnrized: 1ested IBCp.

frTTEERLT

rB=—
£ SEFCETTAN — R
e
Ffor (h=0; k<LM; kii}
£
sorod _slub [leal.c:364: nole: ===== gnalyze_lovp_n=slL =====

sorad_stub float.c:364: note: 1
sorad_stub float.c:364: note: not vectorized: nested Lloop.
sorad_situb float.c:364: note: bad loop form.

for {(i=0; i=M_BLOCK; i++)

1
&%
c
c————= compute layver thickmess. indices for the surface level and
c surface layer are np+l and np, respectiwvely.
*
dplk]l[i] = plik+1]1[1i]l-pLlk] [1];
palk] [i] = B.5%{pLl[k] [1]+pLl[k+1][1i]);
scallk+1]1[i] = dplk]l [i]l#powlpalk] [i]l/300.,.8);
wh[k] [1] = 1.0Z%wal[k] [i]l+*scal[k+1] [1]

* (1.+8.08135*(talk] [i]-24@8.)) + 1.e-8;

rrrrrrrrrrrr

Vectorization Analysis - Il

A part of the OpenCL code with vectorized instruction set for the loop-construct in
the last slide

imal EBX, EAX

add EBX, DWORD PTR [ESP + 28] # 4-byte Folded Relocad
add EDI, DWORD PTR [ESP + 28] # 4-byte Folded Relcad
mov DWORD PTR [ESP + 16], EDI # 4-byte Spill

mov ECX, DWORD PTR [ESP + 56]

movss ¥XMMO, DWORD PTR [ECKX + 4+*EDI]
subss ¥MMO, DWORD PTR [ECX + 4+EBX]

mov EDX, DWORD PTR [ESP + 116]

mov EBP, DWORD PTR [EDX]

mov EDX, DWORD PTR [ESP + 112]

mov EDI, DWORD BTR [EDX]

mov EDX, DWORD ETR [ESE + 527

O R NWIED TR ll-]'ix =+ 4*?“3{], MM

moves XMMO, DWORD DTR [ECY + 4*EBY]

mov DAX, DWORD ETR [E3P + 16 # 4-Syte Belsed

addss XMMO, DWORD PTR [ECHE + 4+ER3]

mulas KMMI, OWORI PR O[TET3 0]

mow ECH, DMORD DTR [ESD + 607

movag DWOLRD DT [ECK + 4*EDX], HXMMO

divss XMMO, OWORD PTR [LCEI3 17

mOTRA XMMI, WORD PTH O EAX + AFEAN)

moves DWORD PTR [ESP], ¥MM1 # 4-byke Spill

mowas XMMI, DWORD DTR [LOCIZ 20

call _wel svml o8 powfl

mlgR ¥MMO, TWORD PTR [RSF! # d-hytr Falded Relcad

are special SIMD
instructions belonging to Intel Advanced Vector Extensions.

Why is OpenCL Faster on the
CPU?

e The current IBM implementation is based around a modified
version of their XLC compiler.

o XLC is designed specifically for the POWER architecture.The
use of XLC by IBM in their implementation of OpenCL should
come as no surprise and it explains why XLC is capable of
sophisticated Altivec code generation.

e The OpenCL implementation in Mac OS X is based on Low
Level Virtual Machine (LLVM) with the Clang front-end. LLVM
was designed as an infrastructure for building compilers, with
a large focus on optimized code generation. LLVM supports
the Intel architecture quite well, explaining why it creates
such well-optimized code from the OpenCL kernel functions
that we have implemented on Mac OS X thus far.

Why is OpenCL Faster on the
CPU?

o Better automatic vectorization

> The OpenCL compiler on IBM architectures uses the
Altivec instruction set, while the OpenCL compiler
on Intel architectures uses Streaming SIMD
Extensions 4.1

 Light weight OpenCL threads
> Better memory management !

* |t should be noted that the OpenCL compiler
might make certain assumptions that GCC
cannot afford to make for naive C code.

o The OpenCL compiler can assume that the given

computation is meant to be run as a many-threaded
piece of code

Benchmarking Other Compilers

Select two sections of SOLAR with complex nested loop
constructs

Compile and run serial sections on GCC, IBM XLC, Intel
C++ compiler

Timing compilers on

platforms

Time(in microseconds)

4500 7

4000 -

3500 -

3000 -

2500 -

2000 -

1500 -

1000 -

500 -

3987

3559

2773

2127

16

1182 12

10
: 944
93%_. 3

523

different

W Section 1

i Section 2

Conclusion

e Multithreaded programming and execution models of
OpenCL can significantly increase the performance

> |IBM POWER and PowerPC and POWER6 CPU architectures

o Similar performance improvement has also been obtained in
Intel CPUs

e Performance improvement in CPUs arises from a much
better implicit vectorization support provided by the
OpenCL compiler infrastructure as compared to auto-
vectorization support provided by popular compilers like
GCC, ICC and IBM XLC.

e Across complier infrastructure Intel ICC on Mac OS X
10.6.7 fares best followed by IBM XLC on POWER6 AlX

Future Work

* We plan to modify the OpenCL code
appropriately to run on GPU.

e Apply OpenMP optimization to serial
code and compare to OpenCL version.

¢ |[dentify programming practices that work
best/worst on GPU and CPU platforms

Questions ?

Thank You

