
Accelerating a climate physics Accelerating a climate physics
model with OpenCLmodel with OpenCL

Fahad Zafar, Dibyajyoti Ghosh, Lawrence Sebald, Shujia Zhou

University of Maryland
Baltimore County

University of Maryland Baltimore County

IntroductionIntroduction

� The demand to increase forecast
predictability has been pushing climate and
weather models
◦ increase model grid resolution
◦ include more physical processes.

� Current trends in the computing industry
have moved from optimizing performance
gains on single-core processors to increasing
the overall performance through parallel
computing with many-core processors.

University of Maryland Baltimore County

OpenCLOpenCL

� Open Computing Language (OpenCL) is
fast becoming the standard for
heterogeneous parallel computing

� Run on CPUs, GPUs, and other � Run on CPUs, GPUs, and other
accelerator architectures (Cell, Fusion)

� OpenCL puts forward a thread-extensive
model for programming

University of Maryland Baltimore County

Contributions and FocusContributions and Focus

� A complete cross-platform real-world
example in OpenCL
� Evaluate cross-platform performance and
portability

Compare C compilers and execution

University of Maryland Baltimore County

� Compare C compilers and execution
environments (IBM, Mac OS X)

� Highlight the performance gain achieved
by OpenCL CPU implementation over
traditional C code on CPUs.

GEOSGEOS--5 Climate Model5 Climate Model

Compute !!!

The NASA Goddard Earth Observing System � The NASA Goddard Earth Observing System
Model, Version 5 (GEOS-5), is a currently
operational climate model.

� SOLAR is a solar radiation model component
[Chou et al. 99] used in GEOS-5 and other climate
and weather models.

University of Maryland Baltimore County

[Chou et al 99] M. D. Chou and M. J. Suarez, “A solar radiation parameterization (clir-ad-sw) for atmospheric studies,” 1999.

SOLARSOLAR
� A production-quality climate or weather model code can span up to a few

hundred thousand lines.
◦ Originally written in FORTRAN

� This particular code was converted to C and ported to the IBM Cell
Broadband Engine by [Zhou et al] where detailed code structure analysis
and performance gains were reported.

� ~20% for SOLAR AND IRRAD, the remaining computing time breaks
down as
◦ ∼25% for dynamics

◦ ∼25% for input and output data

◦ ∼30% for other column-physics components.

� We implemented the serial version of the C code in OpenCL version 1.0
� Platforms: IBM JS21 (PowerPC) and JS22 (Power6) blades, a POWER6 AIX system, and Mac OS

X versions 10.6.4 and 10.6.7 with x86 Intel processors.

University of Maryland Baltimore County

[Zhou et al] S. Zhou, D. Duffy, T. Clune, M. Suarez, S. Williams, and M. Halem, “The impact of IBM Cell technology on the programming
Paradigm in the context of computer systems for climate and weather models,” pp. 2176–2186, 2009.

Code OverviewCode Overview

University of Maryland Baltimore County

ApproachApproach

� Extract compute-intensive kernels
without changing the overall code
structure

� Manually optimized sections of the code � Manually optimized sections of the code
to run in a multi-threaded fashion using
OpenCL kernels and benchmark them.

� Run in 2 Modes

◦ Cross-checking with serial execution

◦ Benchmark

University of Maryland Baltimore County

ApproachApproach

� Compare OpenCL vs. serial GCC

◦ IBM (complete)

◦ Mac OS X (incomplete)

� Compare auto-vectorization with other � Compare auto-vectorization with other
compilers for select sections of the code

University of Maryland Baltimore County

CPU Experiment SetupCPU Experiment Setup

Operating System Compiler

IBM JS 21 blade • GCC v4.1.2

IBM JS 22 blade • GCC v4.1.2IBM JS 22 blade • GCC v4.1.2

IBM POWER6AIX • GCC v4.1.2
• IBM XLC v10.1

Intel 2.66 GHz Core 2 Duo
Mac OS X 10.6.7

• GCC v4.2.1
• Intel C++ Compiler v12.0.4

Code Execution and CheckingCode Execution and Checking

� Parallel code runs side by side
� Cross-check Compute Device values after every
kernel

Code Sample:

University of Maryland Baltimore County

Manual OptimizationManual Optimization

� Porting C code to OpenCL provides
a design decision challenge based on
the nested dependency structure of
the code.

� Dividing one subroutine with multiple
levels of iteration loops and a mix of levels of iteration loops and a mix of
decision statements can be tricky at
times.

� We noticed that splitting some
subroutines into multiple kernels at
times speed up the processing, while
in some cases it reduced
performance.

University of Maryland Baltimore County

FindingsFindings

� Auto vectorization support in OpenCL compiler
◦ better than GCC, IBM XLC, Intel ICC

� We found a 3 ~ 4X performance improvement
per core over the original serial code compiled per core over the original serial code compiled
with GCC

� OpenCL provides access to a multi-threaded
programming and execution model as well as a
low-level API for memory and thread
management

University of Maryland Baltimore County

FindingsFindings

� Similar results were obtained from Intel
ICC compiler and IBM XLC compiler for
these nested loop constructs

� Efficient vectorization and global
optimizations contribute to drastic
speedup in OpenCL

University of Maryland Baltimore County

OpenCL Parallel vs. IBM SerialOpenCL Parallel vs. IBM Serial

� Code implementation complete

� Tested and cross checked

� About 70 compute kernels

� The kernels do not have a one-to-one � The kernels do not have a one-to-one
mapping with the serial solar radiation
code functions.

� The code uses integer and floating point
data types

University of Maryland Baltimore County

Results: Speedup per coreResults: Speedup per core

University of Maryland Baltimore County

Results: Performance gain per Results: Performance gain per
sectionsection

University of Maryland Baltimore County

OpenCL Parallel vs. Mac OS X OpenCL Parallel vs. Mac OS X
Serial Serial
� Code Implementation Incomplete

◦ First two sections tested and running

� Performance is portable to some extent

University of Maryland Baltimore County

Portability IssuesPortability Issues

� The code implemented with OpenCL 1.0
compiled correctly and executed
accurately with cross-checked values in
IBM JS21 and JS22 blades did not run on IBM JS21 and JS22 blades did not run on
Mac OS X “as is”.

� Thread scheduling identified as an issue.

� Platform detection functions would crash
for one platform while ran correctly for
the other.

University of Maryland Baltimore County

VectorizationVectorization testtest

� IBM

◦ Implement a subset of the code using Altivec
Instruction set.

◦ Speedup = 2x

� Intel

◦ Use Intel OpenCL viewer to look at the
assembly code

University of Maryland Baltimore County

Vectorization Analysis Vectorization Analysis -- II
A part of the serial code with GCC vectorization error output

Vectorization Analysis Vectorization Analysis -- IIII
A part of the OpenCL code with vectorized instruction set for the loop-construct in
the last slide

pshufd, paddd, movaps, movups are special SIMD
instructions belonging to Intel Advanced Vector Extensions.

Why is OpenCL Faster on the Why is OpenCL Faster on the
CPU?CPU?
� The current IBM implementation is based around a modified

version of their XLC compiler.
◦ XLC is designed specifically for the POWER architecture. The
use of XLC by IBM in their implementation of OpenCL should
come as no surprise and it explains why XLC is capable of
sophisticated Altivec code generation.

� The OpenCL implementation in Mac OS X is based on Low
Level Virtual Machine (LLVM) with the Clang front-end. LLVM
was designed as an infrastructure for building compilers, with
a large focus on optimized code generation. LLVM supports
the Intel architecture quite well, explaining why it creates
such well-optimized code from the OpenCL kernel functions
that we have implemented on Mac OS X thus far.

University of Maryland Baltimore County

Why is OpenCL Faster on the Why is OpenCL Faster on the
CPU?CPU?
� Better automatic vectorization
◦ The OpenCL compiler on IBM architectures uses the
Altivec instruction set, while the OpenCL compiler
on Intel architectures uses Streaming SIMD
Extensions 4.1

� Light weight OpenCL threads� Light weight OpenCL threads
◦ Better memory management ?

� It should be noted that the OpenCL compiler
might make certain assumptions that GCC
cannot afford to make for naive C code.
◦ The OpenCL compiler can assume that the given
computation is meant to be run as a many-threaded
piece of code

University of Maryland Baltimore County

Benchmarking Other CompilersBenchmarking Other Compilers

Compile and run serial sections on GCC, IBM XLC, Intel

Select two sections of SOLAR with complex nested loop
constructs

Compared timing data

Compile and run serial sections on GCC, IBM XLC, Intel
C++ compiler

Timing compilers on different Timing compilers on different
platformsplatforms

ConclusionConclusion
� Multithreaded programming and execution models of

OpenCL can significantly increase the performance
◦ IBM POWER and PowerPC and POWER6 CPU architectures

◦ Similar performance improvement has also been obtained in
Intel CPUs

� Performance improvement in CPUs arises from a much � Performance improvement in CPUs arises from a much
better implicit vectorization support provided by the
OpenCL compiler infrastructure as compared to auto-
vectorization support provided by popular compilers like
GCC, ICC and IBM XLC.

� Across complier infrastructure Intel ICC on Mac OS X
10.6.7 fares best followed by IBM XLC on POWER6 AIX

University of Maryland Baltimore County

Future WorkFuture Work

� We plan to modify the OpenCL code
appropriately to run on GPU.

� Apply OpenMP optimization to serial � Apply OpenMP optimization to serial
code and compare to OpenCL version.

� Identify programming practices that work
best/worst on GPU and CPU platforms

University of Maryland Baltimore County

Questions ?Questions ?

Thank You

