
1

Evaluating one-sided programming models for GPU
cluster computations

Jeff R. Hammond and A. Eugene DePrince III , Argonne National Laboratory
{jhammond,deprince}@mcs.anl.gov

Abstract — The Global Array toolkit (GA) [1] is a
powerful framework for implementing algorithms with ir-
regular communication patterns, such as those of quantum
chemistry. On the other hand, accelerators such as GPUs
have shown great potential for important kernels in quan-
tum chemistry, for example, atomic integral generation [2]
and dense linear algebra in correlated methods [3].

Integration of the global address space (GAS) program-
ming model and associated one-sided protocols with GPU
programming paradigms such as CUDA has the potential
to revolutionize quantum chemistry by allowing the effi-
cient use of very large clusters of heterogeneous nodes,
such as the future multi-petaflop installation expected at
Oak Ridge National Laboratory in 2012.

This paper reports on our preliminary investigations of
the technical challenges and performance opportunities as-
sociated with cluster-GPU computation using the simplest
approximation to quantum chemistry applications: parallel
matrix-matrix multiplication (MMM). We focus on the
role of asynchronous execution of network communication,
device-to-host transfer, and kernel launch to understand
the extent of latency-hiding that can be achieved for dense
algorithms on large matrices.

I. INTRODUCTION

The hardware roadmap for exascale [4] includes many
challenges, but two of the most obvious are (1) significant
thread-level parallelism on a node and (2) significant node-
level parallelism across a network with topology-dependent la-
tency and bandwidth. The best approximation to the thousand-
fold on-node parallelism today is a GPU, which possesses
significant raw computing power with a constrained execution
model (currently SIMD). Regardless of the network technol-
ogy used to achieve exascale, hiding latency and dealing with
decreasing bandwidth except across very limited distance will
be critical. While much success has been achieved with single-
GPU applications and with massively-parallel supercomputers
with traditional processors (e.g. Cray XT5 and Blue Gene/P),
successful application demonstrations using both accelerator
processing and significant node-level parallelism are quite lim-
ited. The obvious reason is that applications must manage both
network communication and node-level interprocessor com-
munication, which is both challenging from a programming
model perspective but can render latency-sensitive applications
(e.g. molecular dynamics) effectively useless.

Quantum chemistry presents a tremendous opportunity for
combined GPU and cluster parallelism due to (1) latency-

insensitive algorithms, (2) relatively large and regular task
granularity, and (3) large aggregate memory requirements.
A good example of a method with such characteristics is
the “gold-standard” coupled-cluster method CCSD(T) [5], [6].
This method has been demonstrative to efficiently utilize the
supercomputers [7], [8], [9], [10], [11] with thousands to hun-
dreds of thousands of processors at better than 50% efficiency
because the majority of the floating-point computation is dense
matrix-matrix multiplication (SGEMM1). The CCSD(T) method
is realized in two stages: the iterative CCSD step, which is
communication-intensive, and the non-iterative (T) step, which
is more floating-point intensive but is weakly-coupled. The
work required to extend the latter step to utilize attached
processors such as GPUs is nominal, especially within the
already massively-parallel chemistry package NWChem [12].
Less obvious is the difficulty and payoff associated with
running the CCSD iterations on an accelerator due to the
smaller task size and increased data-flow. Unlike the matrix-
matrix multiplications (MMMs) performed in (T), which are
all local, the CCSD iterations resemble, in an algorithmic
sense, a few dozen parallel MMMs on matrices varying in
size from megabytes to terabytes.

This paper explores how one might implement iterative
algorithms in quantum chemistry with large clusters of GPUs
by implementing parallel MMM using the de facto stan-
dard quantum chemistry run-time system, Global Arrays, and
NVIDIA’s GPU API, CUDA. We focus on attaining the great-
est level of asynchronicity possible by exploiting non-blocking
one-sided data-transfer calls in both APIs, hiding latency by
overlapping communication and computation, by increasing
absolute performance by delegating tasks to both the GPU
and CPU, which poses a challenge due to their disparate
performance. Preliminary results demonstrate that the oppor-
tunity for overlap within the hybrid processing environment
is significant because of the obvious lack of contention for
resources when the CPU is managing communication and
only the GPU computes. More importantly, programming
parallel MMM using GA and CUDA is nearly identical to
the CPU-only case, indicating that the one-sided programming
model of GA is naturally extendible to future accelerator-
based supercomputers. Comparison of the CPU and GPU
implementations of parallel MMM shows more than an order-
of-magnitude advantage in performance for the GPU version
despite the cost of data movement within the node.

1In this paper we consider only single-precision due to the deficient double-
precision performance of the current generation of GPU hardware.

2

II. METHODOLOGY

To understand how GPU cluster computation functions
in practice, simple benchmarks were performed on memory
transfer rate and SGEMM performance. Since direct replace-
ment of BLAS3 operations with their CUBLAS equivalents is
desirable and, for the matrix sizes of quantum chemistry, quite
feasible, we compare CPU and GPU SGEMM performance with
transfer time included. Finally, we consider parallel MMM
using different implementations on both CPU and GPU.

Memory transfer performance: Although memory transfer
performance seems like a mundane issue and not worthy of
investigation, in the context of Global Arrays (GA), it acquires
new meaning. Both CUDA and ARMCI [13], the GA one-
sided communication layer, require their own version of reg-
istered memory for maximum bandwidth. ARMCI registration
is especially critical for Infiniband and Cray, the relevant
interconnects for current and future GPU supercomputers.
Unfortunately, as of the CUDA 3.0 driver, there is still no
support for registering previously allocated memory with the
GPU, hence, for a combined GA-CUDA application, one must
choose between using registered memory from CUDA or from
ARMCI but not both. Our measurements attempt to determine
which option maximizes performance in various contexts.
SGEMM performance: While single-GPU applications are

frequently built under the assumption that their entire state
fits into device memory, quantum chemistry calculations have
significant storage requirement which quickly exceed the 10s
of gigabytes available on a single node, hence interesting
calculations warranting a parallel computer necessarily involve
inter-node communication and thus intra-node transfer if GPUs
are to be used. Because of the complexity of the CCSD equa-
tions, it is extremely difficult to reuse data already stored on
the GPU except for non-bottleneck procedures best performed
on the CPU due to their small size. Enforcing strict data-
locality to eliminate intra-node transfers would likely to a
significant load-imbalance, especially at scale, so we consider
only the case where large objects must be copied on and off
the GPU for every kernel launch.

Parallel matrix-matrix multiplication performance: The
final evaluation of GPU-cluster programmability with
GA+CUDA in this paper is a simple implementation of paral-
lel matrix-matrix multiplication. The algorithm is similar to the
SUMMA [14] and SRUMMA [15] algorithms implemented in
GA many years ago, with appropriate modifications related to
transferring tiles to and from the GPU.

III. PRELIMINARY RESULTS

Hardware Details: Unless otherwise noted, all performance
data reported here was obtained on the lincoln machine at
NCSA, which has Intel Xeon E5345 CPUs, NVIDIA Tesla
T10 GPUs with Infiniband SDR interconnect.

Memory transfer performance: Figure 1 demonstrates the
role of registered CUDA memory on transfer bandwidth.
The “in” (host-to-device) performance is diminished between
105 and 106 bytes using unregistered memory (allocated
with posix_memalign and page-alignment), while “out”
(device-to-host) bandwidth is approximately 40% worse using

unregistered memory for all transfer sizes. The impact of
unregistered memory on ARMCI performance is significantly
less for, but becomes pathological at large scale [16]. A
second issue is that CUDA asynchronous memory transfer
operations can only be applied to registered memory seg-
ments. Thus, one must compromise between true one-sided
and bandwidth-optimal communication within the node via
CUDA and scalable one-sided performance between nodes
via ARMCI. This represents an unpalatable choice for HPC
chemistry applications.

 100

 1000

 1 10 100 1000 10000 100000 1e+06

ba
nd

w
id

th
 (

M
iB

/s
)

buffer size (KiB)

transfer bandwidth (Tesla T10)

IN (POSIX)
OUT (POSIX)

IN (CUDA)
OUT (CUDA)

Fig. 1. Transfer bandwidth on Lincoln.

SGEMM performance: The performance of multi-threaded
Intel MKL 11.1 SGEMM versus CUBLAS 2.3 for a variety of
CPUs and GPUs is shown in Figure 2. While the Tesla T10
vastly outperforms the Intel Xeon present in Lincoln for all
but the smallest matrices, more recent Intel processors increase
the cross-over point to above dimension 1000, which limits the
drop-in utility of GPUs significantly. The GPU performance
drops significantly for irregular matrix sizes (rank mod 64 6=
0), which can be address by padding the global array manually.

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000 3500 4000

pe
rf

or
m

an
ce

 (
G

flo
ps

)

rank

SGEMM performance

Xeon E5345
Tesla T10

Nehalem X5550
Xeon E5405

Quadro FX 5600
Core2Duo T9800
Quadro FX 770M

Fig. 2. SGEMM performance on a variety of processors.

Parallel matrix-matrix multiplication performance: Figures
3 and 4 show the scaling over a limited range of CPU

3

or GPU nodes and the effect of increasing asynchronicity
in the GPU implementation. Specifically, in the fully asyn-
chronous implementation in Figure 4, we rearranged GA and
CUDA communication calls to maximize overlap of both with
CUBLAS asynchronous execution.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5000 10000 15000 20000 25000 30000 35000

pe
rf

or
m

an
ce

 (
G

flo
ps

)

rank

SGEMM performance - Lincoln

1 node (GPU)
2 node (GPU)
4 node (GPU)
8 node (GPU)
1 node (CPU)
2 node (CPU)
4 node (CPU)
8 node (CPU)

Fig. 3. Comparison of parallel MMM for various node counts using CPUs
or GPUs.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5000 10000 15000 20000 25000 30000 35000

pe
rf

or
m

an
ce

 (
G

flo
ps

)

rank

parallel SGEMM performance on 8 nodes of Lincoln

fully asynchronous
mildly asynchronous

CPU

Fig. 4. Comparison of two different implementations of parallel MMM on
8 nodes.

IV. CONCLUSIONS AND FUTURE WORK

Our preliminary results demonstrate that significant per-
formance improvements can be achieved by simple drop-in
replacement of CPU BLAS3 calls with their GPU equiva-
lent within the Global Arrays programming model despite
unresolved conflicts between the intra- and internode com-
munication APIs (CUDA and ARMCI) regarding registered
memory. This indicates the likely success of porting large-
scale quantum chemistry calculations such as CCSD to large
GPU-based clusters, especially if future versions of CUDA
implement the necessary features to cooperate with RDMA
interconnects.

In the near future, we will implement the complete version
of SRUMMA (i.e. add prefetching to our existing implemen-
tation), utilize both the CPU and the GPU simultaneously, and
add automated padding and GPU-oriented dimensioning (e.g.
tiles and total dimension should be multiples of 64). All of
these developments will be contributed to the Global Arrays
toolkit for subsequent distribution.

ACKNOWLEDGMENTS

We acknowledge an Argonne Director’s Postdoctoral Fel-
lowship, an Argonne Computational Postdoctoral Fellowship
and the Argonne Laboratory Directed Research and Devel-
opment (LDRD) program for support. This research was
supported in part by the National Science Foundation through
TeraGrid resources provided by NCSA (Lincoln) under grant
number TG-MCB080110N.

REFERENCES

[1] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global arrays: a
portable “shared-memory” programming model for distributed memory
computers,” in Supercomputing ’94: Proceedings of the 1994 conference
on Supercomputing. Los Alamitos, CA, USA: IEEE Computer Society
Press, 1994, pp. 340–ff.

[2] T. J. M. Ivan S. Ufimtsev and, “Quantum chemistry on graphical
processing units. 1. strategies for two-electron integral evaluation,” J.
Chem. Theo. Comp., vol. 4, no. 2, pp. 222–231, 2008.

[3] L. Vogt, R. Olivares-Amaya, S. Kermes, Y. Shao, C. Amador-Bedolla,
and A. Aspuru-Guzik, “Accelerating resolution-of-the-identity second-
order MøllerPlesset quantum chemistry calculations with graphical pro-
cessing units,” J. Phys. Chem. A, vol. 112, no. 10, pp. 2049–2057, 2008.

[4] A. Geist, “Paving the roadmap to exascale.”
[5] K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon,

“A fifth-order perturbation comparison of electron correlation theories,”
Chem. Phys. Lett., vol. 157, pp. 479–483, May 1989.

[6] K. Raghavachari, J. A. Pople, E. S. Replogle, and M. Head-Gordon,
“Fifth order moeller-plesset perturbation theory: comparison of existing
correlation methods and implementation of new methods correct to fifth
order,” J. Phys. Chem., vol. 94, pp. 5579–5586, 1990.

[7] L. Pollack, T. L. Windus, and W. A. de Jong, “Thermodynamic proper-
ties of the C5, C6, and C8 n-alkanes from ab initio electronic structure
theory,” J. Phys. Chem. A, vol. 109, no. 31, pp. 6934–6938, 2005.

[8] E. Aprà, R. J. Harrison, W. A. Shelton, V. Tipparaju, and A. Vazquez-
Mayagoitia, “Computational chemistry at the petascale: Are we there
yet?” J. Phys.: Conf. Ser., vol. 180, p. 012027 (6pp).

[9] E. Aprà, A. P. Rendell, R. J. Harrison, V. Tipparaju, W. A. de Jong, and
S. S. Xantheas, “Liquid water: obtaining the right answer for the right
reasons,” in SC ’09: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, 2009, pp. 1–7.

[10] K. Kowalski, J. R. Hammond, W. A. de Jong, and A. J. Sadlej, “Coupled
cluster calculations for static and dynamic polarizabilities of C60,” J.
Chem. Phys., vol. 129, no. 22, pp. 226 101–226 103, 2008.

[11] K. Kowalski, S. Krishnamoorthy, O. Villa, J. R. Hammond, and
N. Govind, “Active-space completely-renormalized equation-of-motion
coupled-cluster formalism: Excited-state studies of green fluorescent
protein, free-base porphyrin, and oligoporphyrin dimer,” J. Chem. Phys.,
vol. 132, p. 154103, 2010.

[12] E. J. Bylaska et al., “NWChem, a computational chemistry package for
parallel computers, version 5.1.1,” 2009.

[13] J. Nieplocha, V. Tipparaju, M. Krishnan, and D. K. Panda, “High per-
formance remote memory access communication: The armci approach,”
Int. J. High Perform. Comput. Appl., vol. 20, no. 2, pp. 233–253, 2006.

[14] R. A. van de Geijn and J. Watts, “Summa: Scalable universal matrix
multiplication algorithm,” Concurrency: Practice and Experience, vol. 9,
no. 4, pp. 255–274, 1997.

[15] M. Krishnan and J. Nieplocha, “Srumma: A matrix multiplication
algorithm suitable for clusters and scalable shared memory systems,”
Int. Par. and Dist. Proc. Symp., vol. 1, p. 70b, 2004.

[16] S. Krishnamoorthy, S. Shende, J. R. Hammond, N. A. Romero, and A. D.
Malony, “Nwchem workload characterization using the tau performance
system,” p. 10, 2010.

